scholarly journals Hippocampal spatial memory representations in mice are heterogeneously stable

2019 ◽  
Author(s):  
Samuel J Levy ◽  
Nathaniel R Kinsky ◽  
William Mau ◽  
David W Sullivan ◽  
Michael E Hasselmo

AbstractThe population of hippocampal neurons actively coding space continually changes across days as mice repeatedly perform tasks. Many hippocampal place cells become inactive while other previously silent neurons become active, challenging the belief that stable behaviors and memory representations are supported by stable patterns of neural activity. Active cell replacement may disambiguate unique episodes that contain overlapping memory cues, and could contribute to reorganization of memory representations. How active cell replacement affects the evolution of representations of different behaviors within a single task is unknown. We trained mice to perform a Delayed Non-Match to Place (DNMP) task over multiple weeks, and performed calcium imaging in area CA1 of the dorsal hippocampus using head-mounted miniature microscopes. Cells active on the central stem of the maze “split” their calcium activity according to the animal’s upcoming turn direction (left or right), the current task phase (study or test), or both task dimensions, even while spatial cues remained unchanged. We found that different splitter neuron populations were replaced at unequal rates, resulting in an increasing number of cells modulated by turn direction and a decreasing number of cells with combined modulation by both turn direction and task phase. Despite continual reorganization, the ensemble code stably segregated these task dimensions. These results show that hippocampal memories can heterogeneously reorganize even while behavior is unchanging.Significance statementSingle photon calcium imaging using head-mounted miniature microscopes in freely moving animals, has enabled researchers to measure the long term stability of hippocampal pyramidal cells during repeated behaviors. Previous studies have demonstrated instability of neural circuit components including dendritic spines and axonal boutons. It is now known that single units in the neuronal population exhibiting behaviorally relevant activity eventually become inactive and that previously silent neurons can quickly acquire task-relevant activity. The function of such population dynamics is unknown. We show here that population dynamics differ for cells coding distinct task dimensions, suggesting such dynamics are part of a mechanism for latent memory reorganization. These results add to a growing body of work showing that maintenance of episodic memory is an ongoing and dynamic process.


2018 ◽  
Vol 115 (31) ◽  
pp. 8015-8018 ◽  
Author(s):  
Dun Mao ◽  
Adam R. Neumann ◽  
Jianjun Sun ◽  
Vincent Bonin ◽  
Majid H. Mohajerani ◽  
...  

Retrosplenial cortex (RSC) is involved in visuospatial integration and spatial learning, and RSC neurons exhibit discrete, place cell-like sequential activity that resembles the population code of space in hippocampus. To investigate the origins and population dynamics of this activity, we combined longitudinal cellular calcium imaging of dysgranular RSC neurons in mice with excitotoxic hippocampal lesions. We tracked the emergence and stability of RSC spatial activity over consecutive imaging sessions. Overall, spatial activity in RSC was experience-dependent, emerging gradually over time, but, as seen in the hippocampus, the spatial code changed dynamically across days. Bilateral but not unilateral hippocampal lesions impeded the development of spatial activity in RSC. Thus, the emergence of spatial activity in RSC, a major recipient of hippocampal information, depends critically on an intact hippocampus; the indirect connections between the dysgranular RSC and the hippocampus further indicate that hippocampus may exert such influences polysynaptically within neocortex.



eLife ◽  
2018 ◽  
Vol 7 ◽  
Author(s):  
Richard Hakim ◽  
Kiarash Shamardani ◽  
Hillel Adesnik

Cortical gamma oscillations have been implicated in a variety of cognitive, behavioral, and circuit-level phenomena. However, the circuit mechanisms of gamma-band generation and synchronization across cortical space remain uncertain. Using optogenetic patterned illumination in acute brain slices of mouse visual cortex, we define a circuit composed of layer 2/3 (L2/3) pyramidal cells and somatostatin (SOM) interneurons that phase-locks ensembles across the retinotopic map. The network oscillations generated here emerge from non-periodic stimuli, and are stimulus size-dependent, coherent across cortical space, narrow band (30 Hz), and depend on SOM neuron but not parvalbumin (PV) neuron activity; similar to visually induced gamma oscillations observed in vivo. Gamma oscillations generated in separate cortical locations exhibited high coherence as far apart as 850 μm, and lateral gamma entrainment depended on SOM neuron activity. These data identify a circuit that is sufficient to mediate long-range gamma-band coherence in the primary visual cortex.



2019 ◽  
Author(s):  
Nathaniel R. Kinsky ◽  
William Mau ◽  
David W. Sullivan ◽  
Samuel J. Levy ◽  
Evan A. Ruesch ◽  
...  

ABSTRACTTrajectory-dependent splitter neurons in the hippocampus encode information about a rodent’s prior trajectory during performance of a continuous alternation task. As such, they provide valuable information for supporting memory-guided behavior. Here, we employed single-photon calcium imaging in freely moving mice to investigate the emergence and fate of trajectory-dependent activity through learning and mastery of a continuous spatial alternation task. We found that the quality of trajectory-dependent information in hippocampal neurons correlated with task performance. We thus hypothesized that, due to their utility, splitter neurons would exhibit heightened stability. We found that splitter neurons were more likely to remain active and retained more consistent spatial information across multiple days than did place cells. Furthermore, we found that both splitter neurons and place cells emerged rapidly and maintained stable trajectory-dependent/spatial activity thereafter. Our results suggest that neurons with useful functional coding properties exhibit heightened stability to support memory guided behavior.



2019 ◽  
Author(s):  
Daniel A. Lee ◽  
Grigorios Oikonomou ◽  
Tasha Cammidge ◽  
Young Hong ◽  
David A. Prober

ABSTRACTAlthough several sleep-regulating neurons have been identified, little is known about how they interact with each other for sleep/wake control. We previously identified neuropeptide VF (NPVF) and the hypothalamic neurons that produce it as a sleep-promoting system (Lee et al., 2017). Here we use zebrafish to describe a neural circuit in which neuropeptide VF (npvf)-expressing neurons control sleep via the serotonergic raphe nuclei (RN), a hindbrain structure that promotes sleep in both diurnal zebrafish and nocturnal mice. Using genetic labeling and calcium imaging, we show that npvf-expressing neurons innervate and activate serotonergic RN neurons. We additionally demonstrate that optogenetic stimulation of npvf-expressing neurons induces sleep in a manner that requires NPVF and is abolished when the RN are ablated or lack serotonin. Finally, genetic epistasis demonstrates that NPVF acts upstream of serotonin in the RN to maintain normal sleep levels. These findings reveal a novel hypothalamic-hindbrain circuit for sleep/wake control.



2021 ◽  
Author(s):  
Jinyong Zhang ◽  
Ryan N Hughes ◽  
Namsoo Kim ◽  
Isabella P Fallon ◽  
Konstantin I bakhurin ◽  
...  

While in vivo calcium imaging makes it possible to record activity in defined neuronal populations with cellular resolution, optogenetics allows selective manipulation of neural activity. Recently, these two tools have been combined to stimulate and record neural activity at the same time, but current approaches often rely on two-photon microscopes that are difficult to use in freely moving animals. To address these limitations, we have developed a new integrated system combining a one-photon endoscope and a digital micromirror device for simultaneous calcium imaging and precise optogenetic photo-stimulation with near cellular resolution (Miniscope with All-optical Patterned Stimulation and Imaging, MAPSI). Using this highly portable system in freely moving mice, we were able to image striatal neurons from either the direct pathway or the indirect pathway while simultaneously activating any neuron of choice in the field of view, or to synthesize arbitrary spatiotemporal patterns of photo-stimulation. We could also select neurons based on their relationship with behavior and recreate the behavior by mimicking the natural neural activity with photo-stimulation. MAPSI thus provides a powerful tool for interrogation of neural circuit function in freely moving animals.



2016 ◽  
Author(s):  
Maria A. Lim ◽  
Jyothsna Chitturi ◽  
Valeriya Laskova ◽  
Jun Meng ◽  
Daniel Findeis ◽  
...  

AbstractNeuromodulators shape neural circuit dynamics. Combining electron microscopy, genetics, transcriptome profiling, calcium imaging, and optogenetics, we discovered a peptidergic neuron that modulates C. elegans motor circuit dynamics. The Six/SO-family homeobox transcription factor UNC-39 governs lineage-specific neurogenesis to give rise to a neuron RID. RID bears the anatomic hallmarks of a specialized endocrine neuron: it harbors near-exclusive dense core vesicles that cluster periodically along the axon, and expresses multiple neuropeptides, including the FMRF-amide-related FLP-14. RID activity increases during forward movement. Ablating RID reduces the sustainability of forward movement, a phenotype partially recapitulated by removing FLP-14. Optogenetic depolarization of RID prolongs forward movement, an effect reduced in the absence of FLP-14. Together, these results establish the role of a neuroendocrine cell RID in sustaining a specific behavioral state in C. elegans.



2020 ◽  
Vol 16 (9) ◽  
pp. e1008198 ◽  
Author(s):  
Ziqiang Wei ◽  
Bei-Jung Lin ◽  
Tsai-Wen Chen ◽  
Kayvon Daie ◽  
Karel Svoboda ◽  
...  


2004 ◽  
Vol 124 (1) ◽  
pp. 9-25 ◽  
Author(s):  
Bruno Rivard ◽  
Yu Li ◽  
Pierre-Pascal Lenck-Santini ◽  
Bruno Poucet ◽  
Robert U. Muller

Humans can recognize and navigate in a room when its contents have been rearranged. Rats also adapt rapidly to movements of objects in a familiar environment. We therefore set out to investigate the neural machinery that underlies this capacity by further investigating the place cell–based map of the surroundings found in the rat hippocampus. We recorded from single CA1 pyramidal cells as rats foraged for food in a cylindrical arena (the room) containing a tall barrier (the furniture). Our main finding is a new class of cells that signal proximity to the barrier. If the barrier is fixed in position, these cells appear to be ordinary place cells. When, however, the barrier is moved, their activity moves equally and thereby conveys information about the barrier's position relative to the arena. When the barrier is removed, such cells stop firing, further suggesting they represent the barrier. Finally, if the barrier is put into a different arena where place cell activity is changed beyond recognition (“remapping”), these cells continue to discharge at the barrier. We also saw, in addition to barrier cells and place cells, a small number of cells whose activity seemed to require the barrier to be in a specific place in the environment. We conclude that barrier cells represent the location of the barrier in an environment-specific, place cell framework. The combined place + barrier cell activity thus mimics the current arrangement of the environment in an unexpectedly realistic fashion.



2009 ◽  
Vol 102 (2) ◽  
pp. 714-723 ◽  
Author(s):  
Gary Marsat ◽  
Rémi D. Proville ◽  
Leonard Maler

It is an important task in neuroscience to find general principles that relate neural codes to the structure of the signals they encode. The structure of sensory signals can be described in many ways, but one important categorization distinguishes continuous from transient signals. We used the communication signals of the weakly electric fish to reveal how transient signals (chirps) can be easily distinguished from the continuous signal they disrupt. These communication signals—low-frequency sinusoids interrupted by high-frequency transients—were presented to pyramidal cells of the electrosensory lateral line lobe (ELL) during in vivo recordings. We show that a specific population of electrosensory neurons encodes the occurrence of the transient signal by synchronously producing a burst of spikes, whereas bursting was neither common nor synchronous in response to the continuous signal. We also confirmed that burst can be triggered by low-frequency modulations typical of prey signals. However, these bursts are more common in a different segment of the ELL and during spatially localized stimulation. These localized stimuli will elicit synchronized bursting only in a restricted number of cells the receptive fields of which overlap the spatial extent of the stimulus. Therefore the number of cells simultaneously producing a burst and the ELL segment responding most strongly may carry the information required to disambiguate chirps from prey signals. Finally we show that the burst response to chirps is due to a biophysical mechanism previously characterized by in vitro studies of electrosensory neurons. We conclude that bursting and synchrony across cells are important mechanisms used by sensory neurons to carry the information about behaviorally relevant but transient signals.



Author(s):  
Hoger Amin ◽  
Raquel Suárez-Grimalt ◽  
Eleftheria Vrontou ◽  
Andrew C. Lin

AbstractMany neurons show compartmentalized activity, in which activity does not spread readily across the cell, allowing input and output to occur locally. However, the functional implications of compartmentalized activity for the wider neural circuit are often unclear. We addressed this problem in the Drosophila mushroom body, whose principal neurons, Kenyon cells, receive feedback inhibition from a large, non-spiking interneuron called APL. We used local stimulation and volumetric calcium imaging to show that APL inhibits Kenyon cells in both their dendrites and axons, and that both activity in APL and APL’s inhibitory effect on Kenyon cells are spatially localized, allowing APL to differentially inhibit different mushroom body compartments. Applying these results to the Drosophila hemibrain connectome predicts that individual Kenyon cells inhibit themselves via APL more strongly than they inhibit other individual Kenyon cells. These findings reveal how cellular physiology and detailed network anatomy can combine to influence circuit function.



Sign in / Sign up

Export Citation Format

Share Document