scholarly journals Linked networks reveal dual roles of insect dispersal and species sorting for bacterial communities in flowers

2019 ◽  
Author(s):  
Ash T. Zemenick ◽  
Rachel L. Vannette ◽  
Jay A. Rosenheim

AbstractDue to the difficulty of tracking microbial dispersal, it rarely possible to disentangle the relative importance of dispersal and species sorting for microbial community assembly. Here, we leverage a detailed multilevel network to examine drivers of bacterial community assembly within flowers. We show that plant species with similar visitor communities tend to have similar bacterial communities, and visitor identity to be more important than dispersal rate in structuring floral bacterial communities. However, plants occupied divergent positions in plant-insect and plant-microbe networks, suggesting an important role for species sorting. Taken together, our analyses suggest dispersal is important in determining similarity in microbial communities across plant species, but not as important in determining structural features of the floral bacterial network. A multilevel network approach thus allows us to address features of community assembly that cannot be considered when viewing networks as separate entities.

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Dimitri Kalenitchenko ◽  
Erwan Peru ◽  
Pierre E. Galand

AbstractPredicting ecosystem functioning requires an understanding of the mechanisms that drive microbial community assembly. Many studies have explored microbial diversity extensively and environmental factors are thought to be the principal drivers of community composition. Community assembly is, however, also influenced by past conditions that might affect present-day assemblages. Historical events, called legacy effects or historical contingencies, remain poorly studied in the sea and their impact on the functioning of the communities is not known. We tested the influence, if any, of historical contingencies on contemporary community assembly and functions in a marine ecosystem. To do so, we verified if different inoculum communities colonizing the same substrate led to communities with different compositions. We inoculated wood with sea water microbes from different marine environments that differ in ecological and evolutionary history. Using 16S rRNA and metagenomic sequencing, it was demonstrated that historical contingencies change the composition and potential metabolisms of contemporary communities. The effect of historical events was transient, dominated by environmental selection as, over time, species sorting was a more important driver of community assembly. Our study shows not only that historical contingencies affect marine ecosystems but takes the analysis a step further by characterizing this effect as strong but transient.


2020 ◽  
Vol 11 (1) ◽  
Author(s):  
Daliang Ning ◽  
Mengting Yuan ◽  
Linwei Wu ◽  
Ya Zhang ◽  
Xue Guo ◽  
...  

Abstract Unraveling the drivers controlling community assembly is a central issue in ecology. Although it is generally accepted that selection, dispersal, diversification and drift are major community assembly processes, defining their relative importance is very challenging. Here, we present a framework to quantitatively infer community assembly mechanisms by phylogenetic bin-based null model analysis (iCAMP). iCAMP shows high accuracy (0.93–0.99), precision (0.80–0.94), sensitivity (0.82–0.94), and specificity (0.95–0.98) on simulated communities, which are 10–160% higher than those from the entire community-based approach. Application of iCAMP to grassland microbial communities in response to experimental warming reveals dominant roles of homogeneous selection (38%) and ‘drift’ (59%). Interestingly, warming decreases ‘drift’ over time, and enhances homogeneous selection which is primarily imposed on Bacillales. In addition, homogeneous selection has higher correlations with drought and plant productivity under warming than control. iCAMP provides an effective and robust tool to quantify microbial assembly processes, and should also be useful for plant and animal ecology.


2021 ◽  
Vol 7 (1) ◽  
Author(s):  
Yuanlong Li ◽  
Chunxiang Hu

AbstractBiocrusts play critical eco-functions in many drylands, however it is challenging to explore their community assembly, particularly within patched successional types and across climate zones. Here, different successional biocrusts (alga, lichen, and moss-dominated biocrusts) were collected across the northern China, and assembly of biocrust microbial communities was investigated by high-throughput sequencing combined with measurements of soil properties and microclimate environments. Bacterial and eukaryotic communities showed that the maximum and minimum community variation occurred across longitude and latitude, respectively. In the regions where all three stages of biocrusts were involved, the highest community difference existed between successional stages, and decreased with distance. The community assembly was generally driven by dispersal limitation, although neutral processes have controlled the eukaryotic community assembly in hyperarid areas. Along the succession, bacterial community had no obvious patterns, but eukaryotic community showed increasing homogeneity, with increased species sorting and decreased dispersal limitation for community assembly. Compared to early successional biocrusts, there were higher microbial mutual exclusions and more complex networks at later stages, with distinct topological features. Correlation analysis further indicated that the balance between deterministic and stochastic processes might be mediated by aridity, salinity, and total phosphorus, although the mediations were opposite for bacteria and eukaryotes.


2020 ◽  
Author(s):  
Daliang Ning ◽  
Mengting Yuan ◽  
Linwei Wu ◽  
Ya Zhang ◽  
Xue Guo ◽  
...  

AbstractUnraveling the drivers controlling community assembly is a central issue in ecology. Selection, dispersal, diversification and drift are conceptually accepted as major community assembly processes. Defining their relative importance in governing biodiversity is compellingly needed, but very challenging. Here, we present a novel framework to quantitatively infer community assembly mechanisms by phylogenetic bin-based null model analysis (iCAMP). Our results with simulated microbial communities showed that iCAMP had high accuracy (0.93 - 0.99), precision (0.80 - 0.94), sensitivity (0.82 - 0.94), and specificity (0.95 - 0.98), which were 10-160% higher than those from the entire community-based approach. Applying it to grassland microbial communities in response to experimental warming, our analysis showed that homogeneous selection (38%) and “drift” (59%) played dominant roles in controlling grassland soil microbial community assembly. Interestingly, warming enhanced homogeneous selection, but decreased “drift” over time. Warming-enhanced selection was primarily imposed on Bacillales in Firmicutes, which were strengthened by increased drought and reduced plant productivity. This general framework should also be useful for plant and animal ecology.


2021 ◽  
Author(s):  
Fangying Lei ◽  
Haonan Huang ◽  
Qin Yang ◽  
Shaodong Fu ◽  
Xue Guo ◽  
...  

Abstract Plant-specialized secondary metabolites have ecological functions in mediating interactions between plants and their entophytes. Here, we aimed to reveal the interaction between flavonoid synthesis and endophytic bacterial communities in wild Ginkgo trees spanning 100-800 years. We found that flavonoids including quercetin, kaempferol and isorhamnetin decreased while the microbial diversity in leaves increased with the age of sampled trees. Older trees had more unique genera and shifted their endophytic bacterial community structure. Also, Mantel tests and correlation analysis indicated a generally significant (p < 0.05) negative correlation between endophytic bacterial communities and flavonoids. Additionally, both deterministic and stochastic processes could play roles in the assembly of endophytic bacterial communities in Ginkgo trees with a progressive increase in stochastic processes as flavonoid concentrations decreased. This study provides a mechanistic understanding of how flavonoids modulate the endophytic microbial community assembly.


2020 ◽  
Vol 86 (14) ◽  
Author(s):  
Rujia He ◽  
Jin Zeng ◽  
Dayong Zhao ◽  
Rui Huang ◽  
Zhongbo Yu ◽  
...  

ABSTRACT The common reed (Phragmites australis), a cosmopolitan aquatic macrophyte, plays an important role in the structure and function of aquatic ecosystems. We compared bacterial community compositions (BCCs) and their assembly processes in the root-associated compartments (i.e., rhizosphere and endosphere) of reed and bulk sediment between summer and winter. The BCCs were analyzed using high-throughput sequencing of the bacterial 16S rRNA gene; meanwhile, null-model analysis was employed to characterize their assembly mechanisms. The sources of the endosphere BCCs were quantitatively examined using SourceTracker from bulk sediment, rhizosphere, and seed. We observed the highest α-diversity and the lowest β-diversity of BCCs in the rhizosphere in both seasons. We also found a significant increase in α- and β-diversity in summer compared to that in winter among the three compartments. It was demonstrated that rhizosphere sediments were the main source (∼70%) of root endosphere bacteria during both seasons. Null-model tests indicated that stochastic processes primarily affected endosphere BCCs, whereas both deterministic and stochastic processes dictated bacterial assemblages of the rhizosphere, with the relative importance of stochastic versus deterministic processes depending on the season. This study suggests that multiple mechanisms of bacterial selection and community assembly exist both inside and outside P. australis roots in different seasons. IMPORTANCE Understanding the composition and assembly mechanisms of root-associated microbial communities of plants is crucial for understanding the interactions between plants and soil. Most previous studies of the plant root-associated microbiome focused on model and economic plants, with fewer temporal or seasonal investigations. The assembly mechanisms of root-associated bacterial communities in different seasons remain poorly known, especially for the aquatic macrophytes. In this study, we compared the diversity, composition, and relative importance of two different assembly processes (stochastic and deterministic processes) of bacterial communities associated with bulk sediment and the rhizosphere and endosphere of Phragmites australis in summer and winter. While we found apparent differences in composition, diversity, and assembly processes of bacterial communities among different compartments, season played important roles in determining BCCs and their diversity patterns and assemblages. We also found that endosphere bacteria mainly originated from the rhizosphere. The results add new knowledge regarding the plant-microbe interactions in aquatic ecosystems.


2011 ◽  
Vol 366 (1576) ◽  
pp. 2403-2413 ◽  
Author(s):  
Evan Weiher ◽  
Deborah Freund ◽  
Tyler Bunton ◽  
Artur Stefanski ◽  
Tali Lee ◽  
...  

Ecological approaches to community assembly have emphasized the interplay between neutral processes, niche-based environmental filtering and niche-based species sorting in an interactive milieu. Recently, progress has been made in terms of aligning our vocabulary with conceptual advances, assessing how trait-based community functional parameters differ from neutral expectation and assessing how traits vary along environmental gradients. Experiments have confirmed the influence of these processes on assembly and have addressed the role of dispersal in shaping local assemblages. Community phylogenetics has forged common ground between ecologists and biogeographers, but it is not a proxy for trait-based approaches. Community assembly theory is in need of a comparative synthesis that addresses how the relative importance of niche and neutral processes varies among taxa, along environmental gradients, and across scales. Towards that goal, we suggest a set of traits that probably confer increasing community neutrality and regionality and review the influences of stress, disturbance and scale on the importance of niche assembly. We advocate increasing the complexity of experiments in order to assess the relative importance of multiple processes. As an example, we provide evidence that dispersal, niche processes and trait interdependencies have about equal influence on trait-based assembly in an experimental grassland.


Sign in / Sign up

Export Citation Format

Share Document