scholarly journals Cholesterol binding to the sterol-sensing region of Niemann Pick C1 protein confines dynamics of its N-terminal domain

2019 ◽  
Author(s):  
Vikas Dubey ◽  
Behruz Bozorg ◽  
Daniel Wüstner ◽  
Himanshu Khandelia

AbstractLysosomal accumulation of cholesterol is a hallmark of Niemann Pick type C (NPC) disease caused by mutations primarily in the lysosomal membrane protein NPC1. NPC1 contains a transmembrane sterol sensing domain (SSD), which is supposed to regulate protein activity upon cholesterol binding, but the mechanisms underlying this process are poorly understood. Using atomistic simulations, we show that the binding of cholesterol to the SSD of NPC1 suppresses conformational dynamics of the luminal domains which otherwise bring the luminal N-terminal domain (NTD) closer to the lipid bilayer. The presence of an additional 20% membrane cholesterol has negligible impact on this process. We propose that cholesterol acts as an allosteric effector, and the modulation of NTD dynamics by the SSD-bound cholesterol constitutes an allosteric feedback mechanism in NPC1 which controls cholesterol abundance in the lysosomal membrane.


2020 ◽  
Vol 16 (10) ◽  
pp. e1007554
Author(s):  
Vikas Dubey ◽  
Behruz Bozorg ◽  
Daniel Wüstner ◽  
Himanshu Khandelia


2021 ◽  
Vol 22 (11) ◽  
pp. 5871
Author(s):  
Almerinda Di Venere ◽  
Eleonora Nicolai ◽  
Velia Minicozzi ◽  
Anna Maria Caccuri ◽  
Luisa Di Paola ◽  
...  

TNF Receptor Associated Factor 2 (TRAF2) is a trimeric protein that belongs to the TNF receptor associated factor family (TRAFs). The TRAF2 oligomeric state is crucial for receptor binding and for its interaction with other proteins involved in the TNFR signaling. The monomer-trimer equilibrium of a C- terminal domain truncated form of TRAF2 (TRAF2-C), plays also a relevant role in binding the membrane, causing inward vesiculation. In this study, we have investigated the conformational dynamics of TRAF2-C through circular dichroism, fluorescence, and dynamic light scattering, performing temperature-dependent measurements. The data indicate that the protein retains its oligomeric state and most of its secondary structure, while displaying a significative increase in the heterogeneity of the tyrosines signal, increasing the temperature from ≈15 to ≈35 °C. The peculiar crowding of tyrosine residues (12 out of 18) at the three subunit interfaces and the strong dependence on the trimer concentration indicate that such conformational changes mainly involve the contact areas between each pair of monomers, affecting the oligomeric state. Molecular dynamic simulations in this temperature range suggest that the interfaces heterogeneity is an intrinsic property of the trimer that arises from the continuous, asymmetric approaching and distancing of its subunits. Such dynamics affect the results of molecular docking on the external protein surface using receptor peptides, indicating that the TRAF2-receptor interaction in the solution might not involve three subunits at the same time, as suggested by the static analysis obtainable from the crystal structure. These findings shed new light on the role that the TRAF2 oligomeric state might have in regulating the protein binding activity in vivo.



mBio ◽  
2018 ◽  
Vol 9 (6) ◽  
Author(s):  
Jane E. Schulte ◽  
Mark Goulian

ABSTRACTSixA, a well-conserved protein found in proteobacteria, actinobacteria, and cyanobacteria, is the only reported example of a bacterial phosphohistidine phosphatase. A single protein target of SixA has been reported to date: theEscherichia colihistidine kinase ArcB. The present work analyzes an ArcB-independent growth defect of asixAdeletion inE. coli. A screen for suppressors, analysis of various mutants, and phosphorylation assays indicate that SixA modulates phosphorylation of the nitrogen-related phosphotransferase system (PTSNtr). The PTSNtris a widely conserved bacterial pathway that regulates diverse metabolic processes through the phosphorylation states of its protein components, EINtr, NPr, and EIIANtr, which receive phosphoryl groups on histidine residues. However, a mechanism for dephosphorylating this system has not been reported. The results presented here suggest a model in which SixA removes phosphoryl groups from the PTSNtrby acting on NPr. This work uncovers a new role for the phosphohistidine phosphatase SixA and, through factors that affect SixA expression or activity, may point to additional inputs that regulate the PTSNtr.IMPORTANCEOne common means to regulate protein activity is through phosphorylation. Protein phosphatases exist to reverse this process, returning the protein to the unphosphorylated form. The vast majority of protein phosphatases that have been identified target phosphoserine, phosphotheronine, and phosphotyrosine. A widely conserved phosphohistidine phosphatase was identified inEscherichia coli20 years ago but remains relatively understudied. The present work shows that this phosphatase modulates the nitrogen-related phosphotransferase system, a pathway that is regulated by nitrogen and carbon metabolism and affects diverse aspects of bacterial physiology. Until now, there was no known mechanism for removing phosphoryl groups from this pathway.



2016 ◽  
Vol 6 (1) ◽  
Author(s):  
Encarnación Medina-Carmona ◽  
Rogelio J. Palomino-Morales ◽  
Julian E. Fuchs ◽  
Esperanza Padín-Gonzalez ◽  
Noel Mesa-Torres ◽  
...  

Abstract Protein dynamics is essential to understand protein function and stability, even though is rarely investigated as the origin of loss-of-function due to genetic variations. Here, we use biochemical, biophysical, cell and computational biology tools to study two loss-of-function and cancer-associated polymorphisms (p.R139W and p.P187S) in human NAD(P)H quinone oxidoreductase 1 (NQO1), a FAD-dependent enzyme which activates cancer pro-drugs and stabilizes several oncosuppressors. We show that p.P187S strongly destabilizes the NQO1 dimer in vitro and increases the flexibility of the C-terminal domain, while a combination of FAD and the inhibitor dicoumarol overcome these alterations. Additionally, changes in global stability due to polymorphisms and ligand binding are linked to the dynamics of the dimer interface, whereas the low activity and affinity for FAD in p.P187S is caused by increased fluctuations at the FAD binding site. Importantly, NQO1 steady-state protein levels in cell cultures correlate primarily with the dynamics of the C-terminal domain, supporting a directional preference in NQO1 proteasomal degradation and the use of ligands binding to this domain to stabilize p.P187S in vivo. In conclusion, protein dynamics are fundamental to understanding loss-of-function in p.P187S and to develop new pharmacological therapies to rescue this function.



2001 ◽  
Vol 114 (10) ◽  
pp. 1893-1900 ◽  
Author(s):  
S. Lusa ◽  
T.S. Blom ◽  
E.L. Eskelinen ◽  
E. Kuismanen ◽  
J.E. Mansson ◽  
...  

In mammalian cells, cholesterol is thought to associate with sphingolipids to form lateral membrane domains termed rafts. Increasing evidence suggests that rafts regulate protein interactions, for example, during signalling, intracellular transport and host-pathogen interactions. Rafts are present in cholesterol-sphingolipid-enriched membranes, including early and recycling endosomes, but whether rafts are found in late endocytic organelles has not been analyzed. In this study, we analyzed the association of cholesterol and late endosomal proteins with low-density detergent-resistant membranes (DRMs) in normal cells and in cells with lysosomal cholesterol-sphingolipid accumulation. In normal cells, the majority of [(3)H]cholesterol released from [(3)H]cholesterol ester-LDL associated with detergent-soluble membranes, was rapidly transported to the plasma membrane and became increasingly insoluble with time. In Niemann-Pick C1 (NPC1) protein-deficient lipidosis cells, the association of LDL-cholesterol with DRMs was enhanced and its transport to the plasma membrane was inhibited. In addition, the NPC1 protein was normally recovered in detergent-soluble membranes and its association with DRMs was enhanced by lysosomal cholesterol loading. Moreover, lysosomal cholesterol deposition was kinetically paralleled by the sequestration of sphingolipids and formation of multilamellar bodies in late endocytic organelles. These results suggest that late endocytic organelles are normally raft-poor and that endocytosed LDL-cholesterol is efficiently recycled to the plasma membrane in an NPC1-dependent process. The cholesterol-sphingolipid accumulation characteristic to NPC disease, and potentially to other sphingolipidoses, causes an overcrowding of rafts forming lamellar bodies in the degradative compartments.



ACS Omega ◽  
2019 ◽  
Vol 4 (25) ◽  
pp. 20894-20904
Author(s):  
Vasanthanathan Poongavanam ◽  
Jacob Kongsted ◽  
Daniel Wüstner


2019 ◽  
Vol 116 (31) ◽  
pp. 15725-15734 ◽  
Author(s):  
Jose Julian ◽  
Alberto Coego ◽  
Jorge Lozano-Juste ◽  
Esther Lechner ◽  
Qian Wu ◽  
...  

Early abscisic acid signaling involves degradation of clade A protein phosphatases type 2C (PP2Cs) as a complementary mechanism to PYR/PYL/RCAR-mediated inhibition of PP2C activity. At later steps, ABA induces up-regulation of PP2C transcripts and protein levels as a negative feedback mechanism. Therefore, resetting of ABA signaling also requires PP2C degradation to avoid excessive ABA-induced accumulation of PP2Cs. It has been demonstrated that ABA induces the degradation of existing ABI1 and PP2CA through the PUB12/13 and RGLG1/5 E3 ligases, respectively. However, other unidentified E3 ligases are predicted to regulate protein stability of clade A PP2Cs as well. In this work, we identified BTB/POZ AND MATH DOMAIN proteins (BPMs), substrate adaptors of the multimeric cullin3 (CUL3)-RING-based E3 ligases (CRL3s), as PP2CA-interacting proteins. BPM3 and BPM5 interact in the nucleus with PP2CA as well as with ABI1, ABI2, and HAB1. BPM3 and BPM5 accelerate the turnover of PP2Cs in an ABA-dependent manner and their overexpression leads to enhanced ABA sensitivity, whereas bpm3 bpm5 plants show increased accumulation of PP2CA, ABI1 and HAB1, which leads to global diminished ABA sensitivity. Using biochemical and genetic assays, we demonstrated that ubiquitination of PP2CA depends on BPM function. Given the formation of receptor-ABA-phosphatase ternary complexes is markedly affected by the abundance of protein components and ABA concentration, we reveal that BPMs and multimeric CRL3 E3 ligases are important modulators of PP2C coreceptor levels to regulate early ABA signaling as well as the later desensitizing-resetting steps.





2008 ◽  
Vol 105 (40) ◽  
pp. 15287-15292 ◽  
Author(s):  
Rodney E. Infante ◽  
Michael L. Wang ◽  
Arun Radhakrishnan ◽  
Hyock Joo Kwon ◽  
Michael S. Brown ◽  
...  

Egress of lipoprotein-derived cholesterol from lysosomes requires two lysosomal proteins, polytopic membrane-bound Niemann–Pick C1 (NPC1) and soluble Niemann–Pick C2 (NPC2). The reason for this dual requirement is unknown. Previously, we showed that the soluble luminal N-terminal domain (NTD) of NPC1 (amino acids 25–264) binds cholesterol. This NTD is designated NPC1(NTD). We and others showed that soluble NPC2 also binds cholesterol. Here, we establish an in vitro assay to measure transfer of [3H]cholesterol between these two proteins and phosphatidylcholine liposomes. Whereas NPC2 rapidly donates or accepts cholesterol from liposomes, NPC1(NTD) acts much more slowly. Bidirectional transfer of cholesterol between NPC1(NTD) and liposomes is accelerated >100-fold by NPC2. A naturally occurring human mutant of NPC2 (Pro120Ser) fails to bind cholesterol and fails to stimulate cholesterol transfer from NPC1(NTD) to liposomes. NPC2 may be essential to deliver or remove cholesterol from NPC1, an interaction that links both proteins to the cholesterol egress process from lysosomes. These findings may explain how mutations in either protein can produce a similar clinical phenotype.





Sign in / Sign up

Export Citation Format

Share Document