cholesterol binding
Recently Published Documents


TOTAL DOCUMENTS

261
(FIVE YEARS 39)

H-INDEX

44
(FIVE YEARS 4)

mBio ◽  
2021 ◽  
Author(s):  
Weiyan Huang ◽  
Qingming Xiong ◽  
Mingqun Lin ◽  
Yasuko Rikihisa

Cholesterol influences membrane fluidity and forms membrane microdomains called lipid rafts that serve as organizing centers for the assembly of signaling molecules. Flotillin (FLOT) is a cholesterol-binding lipid-raft protein.


Membranes ◽  
2021 ◽  
Vol 11 (8) ◽  
pp. 570
Author(s):  
Evan van van Aalst ◽  
Jotham Koneri ◽  
Benjamin J. Wylie

CC motif chemokine receptor 3 (CCR3) is a Class A G protein-coupled receptor (GPCR) mainly responsible for the cellular trafficking of eosinophils. As such, it plays key roles in inflammatory conditions, such as asthma and arthritis, and the metastasis of many deadly forms of cancer. However, little is known about how CCR3 functionally interacts with its bilayer environment. Here, we investigate cholesterol binding sites in silico through Coarse-Grained Molecular Dynamics (MD) and Pylipid analysis using an extensively validated homology model based on the crystal structure of CCR5. These simulations identified several cholesterol binding sites containing Cholesterol Recognition/Interaction Amino Acid Consensus motif (CRAC) and its inversion CARC motifs in CCR3. One such site, a CARC site in TM1, in conjunction with aliphatic residues in TM7, emerged as a candidate for future investigation based on the cholesterol residency time within the binding pocket. This site forms the core of a cholesterol binding site previously observed in computational studies of CCR2 and CCR5. Most importantly, these cholesterol binding sites are conserved in other chemokine receptors and may provide clues to cholesterol regulation mechanisms in this subfamily of Class A GPCRs.


Biomolecules ◽  
2021 ◽  
Vol 11 (7) ◽  
pp. 935
Author(s):  
Urszula Orzeł ◽  
Jakub Jakowiecki ◽  
Krzysztof Młynarczyk ◽  
Sławomir Filipek

Alzheimer’s disease is the most common progressive neurodegenerative disorder and is characterized by the presence of amyloid β (Aβ) plaques in the brain. The γ-secretase complex, which produces Aβ, is an intramembrane-cleaving protease consisting of four membrane proteins. In this paper we investigated the amyloidogenic fragments of amyloid precursor protein (substrates Aβ43 and Aβ45, leading to less amyloidogenic Aβ40 and more amyloidogenic Aβ42, respectively) docked to the binding site of presenilin, the catalytic subunit of γ-secretase. In total, we performed 9 μs of all-atom molecular dynamics simulations of the whole γ-secretase complex with both substrates in low (10%) and high (50%) concentrations of cholesterol in the membrane. We found that, at the high cholesterol level, the Aβ45 helix was statistically more flexible in the binding site of presenilin than Aβ43. An increase in the cholesterol concentration was also correlated with a higher flexibility of the Aβ45 helix, which suggests incompatibility between Aβ45 and the binding site of presenilin potentiated by a high cholesterol level. However, at the C-terminal part of Aβ45, the active site of presenilin was more compact in the case of a high cholesterol level, which could promote processing of this substrate. We also performed detailed mapping of the cholesterol binding sites at low and high cholesterol concentrations, which were independent of the typical cholesterol binding motifs.


2021 ◽  
Author(s):  
Sahil Lall ◽  
Padmanabhan Balaram ◽  
Shachi Gosavi ◽  
M.K. Mathew

The spike (S) protein is a trimeric, membrane-anchored fusion protein that enables coronaviruses, such as the SARS-CoV-2, to recognize and fuse with their hosts' cells. While the prefusion and postfusion structures of the ectomembrane domain of the spike protein are available, the corresponding organization of its transmembrane domain is obscure. Since the transmembrane and ectomembrane domains of fusion proteins are conformationally linked, an understanding of trimerization and transmembrane conformations in the viral envelope is a prerequisite to completely understand viral fusion by the spike protein. To address this, we computationally explored the self-assembly of the SARS-CoV-2 spike transmembrane domain, starting first by determining the membrane boundaries of the spike transmembrane helix. Using atomistic molecular dynamics simulations, we found the spike protein transmembrane domain to be plastic, and the transmembrane helix to be very dynamic. The observed movements of the helix changed the membrane embedded sequence, and thereby affected the conformational ensemble of the transmembrane assembly in Martini coarse grained simulations, even flipping the super-helical handedness. Analysis of the transmembrane organization of the spike transmembrane helix provided rich insights into the interfaces utilized to self-associate. Moreover, we identified two distinct cholesterol binding regions on the transmembrane helix with different affinities for the sterol. The cholesterol binding pockets overlapped with regions involved in the initiation of transmembrane protein-protein interaction. Together, the results from our multiscale simulations not only provide insight into understudied trimeric helical interfaces in biomembranes, but also enhance our understanding of the elusive transmembrane conformational dynamics of SARS-CoV-2 spike and more generally of viral fusion proteins. These insights should enable the inclusion of the conformations of the spike protein transmembrane domain into the prevalent models of virus fusion.


Molecules ◽  
2021 ◽  
Vol 26 (5) ◽  
pp. 1250
Author(s):  
Hien T. T. Lai ◽  
Alejandro Giorgetti ◽  
Giulia Rossetti ◽  
Toan T. Nguyen ◽  
Paolo Carloni ◽  
...  

The translocator protein (TSPO) is a 18kDa transmembrane protein, ubiquitously present in human mitochondria. It is overexpressed in tumor cells and at the sites of neuroinflammation, thus representing an important biomarker, as well as a promising drug target. In mammalian TSPO, there are cholesterol–binding motifs, as well as a binding cavity able to accommodate different chemical compounds. Given the lack of structural information for the human protein, we built a model of human (h) TSPO in the apo state and in complex with PK11195, a molecule routinely used in positron emission tomography (PET) for imaging of neuroinflammatory sites. To better understand the interactions of PK11195 and cholesterol with this pharmacologically relevant protein, we ran molecular dynamics simulations of the apo and holo proteins embedded in a model membrane. We found that: (i) PK11195 stabilizes hTSPO structural fold; (ii) PK11195 might enter in the binding site through transmembrane helices I and II of hTSPO; (iii) PK11195 reduces the frequency of cholesterol binding to the lower, N–terminal part of hTSPO in the inner membrane leaflet, while this impact is less pronounced for the upper, C–terminal part in the outer membrane leaflet, where the ligand binding site is located; (iv) very interestingly, cholesterol most frequently binds simultaneously to the so-called CRAC and CARC regions in TM V in the free form (residues L150–X–Y152–X(3)–R156 and R135–X(2)–Y138–X(2)–L141, respectively). However, when the protein is in complex with PK11195, cholesterol binds equally frequently to the CRAC–resembling motif that we observed in TM I (residues L17–X(2)–F20–X(3)–R24) and to CRAC in TM V. We expect that the CRAC–like motif in TM I will be of interest in future experimental investigations. Thus, our MD simulations provide insight into the structural features of hTSPO and the previously unknown interplay between PK11195 and cholesterol interactions with this pharmacologically relevant protein.


2021 ◽  
Vol 120 (3) ◽  
pp. 49a
Author(s):  
Ali Rasouli ◽  
Po-Chao Wen ◽  
Emad Tajkhorshid

Author(s):  
Salma Pathan-Chhatbar ◽  
Carina Drechsler ◽  
Kirsten Richter ◽  
Anna Morath ◽  
Wei Wu ◽  
...  

Biological membranes consist of hundreds of different lipids that together with the embedded transmembrane (TM) proteins organize themselves into small nanodomains. In addition to this function of lipids, TM regions of proteins bind to lipids in a very specific manner, but the function of these TM region-lipid interactions is mostly unknown. In this review, we focus on the role of plasma membrane cholesterol, which directly binds to the αβ T cell antigen receptor (TCR), and has at least two opposing functions in αβ TCR activation. On the one hand, cholesterol binding to the TM domain of the TCRβ subunit keeps the TCR in an inactive, non-signaling conformation by stabilizing this conformation. This assures that the αβ T cell remains quiescent in the absence of antigenic peptide-MHC (the TCR's ligand) and decreases the sensitivity of the T cell toward stimulation. On the other hand, cholesterol binding to TCRβ leads to an increased formation of TCR nanoclusters, increasing the avidity of the TCRs toward the antigen, thus increasing the sensitivity of the αβ T cell. In mouse models, pharmacological increase of the cholesterol concentration in T cells caused an increase in TCR clustering, and thereby enhanced anti-tumor responses. In contrast, the γδ TCR does not bind to cholesterol and might be regulated in a different manner. The goal of this review is to put these seemingly controversial findings on the impact of cholesterol on the αβ TCR into perspective.


Sign in / Sign up

Export Citation Format

Share Document