ligand specificity
Recently Published Documents


TOTAL DOCUMENTS

398
(FIVE YEARS 54)

H-INDEX

60
(FIVE YEARS 4)

2022 ◽  
Vol 13 (1) ◽  
Author(s):  
Tzu-Ping Ko ◽  
Yu-Chuan Wang ◽  
Chia-Shin Yang ◽  
Mei-Hui Hou ◽  
Chao-Jung Chen ◽  
...  

AbstractMammalian innate immune sensor STING (STimulator of INterferon Gene) was recently found to originate from bacteria. During phage infection, bacterial STING sense c-di-GMP generated by the CD-NTase (cGAS/DncV-like nucleotidyltransferase) encoded in the same operon and signal suicide commitment as a defense strategy that restricts phage propagation. However, the precise binding mode of c-di-GMP to bacterial STING and the specific recognition mechanism are still elusive. Here, we determine two complex crystal structures of bacterial STING/c-di-GMP, which provide a clear picture of how c-di-GMP is distinguished from other cyclic dinucleotides. The protein-protein interactions further reveal the driving force behind filament formation of bacterial STING. Finally, we group the bacterial STING into two classes based on the conserved motif in β-strand lid, which dictate their ligand specificity and oligomerization mechanism, and propose an evolution-based model that describes the transition from c-di-GMP-dependent signaling in bacteria to 2’3’-cGAMP-dependent signaling in eukaryotes.


ChemBioChem ◽  
2022 ◽  
Author(s):  
Felix Tobola ◽  
Martin Lepšík ◽  
Syeda Rehana Zia ◽  
Hakon Leffler ◽  
Ulf J. Nilsson ◽  
...  
Keyword(s):  

2021 ◽  
Author(s):  
YaoYao Liang ◽  
Juan Luo ◽  
Chenhao Yang ◽  
Shuning Guo ◽  
Bowen Zhang ◽  
...  

Abstract 4-Hydroxymandelic acid (HMA) is widely applied in pharmaceuticals, food and cosmetics. In this study, we aimed to develop an allosteric transcription factors (aTFs) based biosensor for HMA. PobR, an aTF for HMA analog 4-hydroxybenzoic acid, was used to alter its selectivity and create novel aTFs responsive to HMA by directed evolution. We established a PobR mutant library with a capacity of 550,000 mutants using error-prone PCR and Megawhop PCR. Through our screening, two mutants were obtained with responsiveness to HMA. Analysis of each missense mutation indicating residues 122-126 were involved in its PobR ligand specificity. These results showed the effectiveness of directed evolution in switching the ligand specificity of a biosensor and improving HMA production.


2021 ◽  
Author(s):  
Sérgio Marques ◽  
Michaela Slanska ◽  
Klaudia Chmelova ◽  
Radka Chaloupkova ◽  
Martin Marek ◽  
...  

HaloTag labeling technology has introduced unrivaled potential in protein chemistry, molecular and cellular biology. A wide variety of ligands have been developed to meet the specific needs of diverse applications, but only a single protein tag, DhaAHT, is routinely used for their incorporation. Following a systematic kinetic and computational analysis of different reporters, tetramethylrhodamine and three 4-stilbazolium-based fluorescent ligands, we showed that the mechanism of incorporating different ligands depends both on the binding step and the efficiency of the chemical reaction. By studying the different haloalkane dehalogenases DhaA, LinB, and DmmA, we found that the architecture of the access tunnels is critical for the kinetics of both steps and the ligand specificity. We show that highly efficient labelling with specific ligands is achievable with natural dehalogenases. We propose a simple protocol for selecting the optimal protein tag for a specific ligand from a wide pool of available enzymes with diverse access tunnel architectures. The application of this protocol eliminates a need for expensive and laborious protein engineering.


2021 ◽  
Vol 22 (23) ◽  
pp. 13077
Author(s):  
Sergey N. Lomin ◽  
Ekaterina M. Savelieva ◽  
Dmitry V. Arkhipov ◽  
Pavel P. Pashkovskiy ◽  
Yulia A. Myakushina ◽  
...  

Cytokinins (CKs) control many plant developmental processes and responses to environmental cues. Although the CK signaling is well understood, we are only beginning to decipher its evolution. Here, we investigated the CK perception apparatus in early-divergent plant species such as bryophyte Physcomitrium patens, lycophyte Selaginella moellendorffii, and gymnosperm Picea abies. Of the eight CHASE-domain containing histidine kinases (CHKs) examined, two CHKs, PpCHK3 and PpCHK4, did not bind CKs. All other CHK receptors showed high-affinity CK binding (KD of nM range), with a strong preference for isopentenyladenine over other CK nucleobases in the moss and for trans-zeatin over cis-zeatin in the gymnosperm. The pH dependences of CK binding for these six CHKs showed a wide range, which may indicate different subcellular localization of these receptors at either the plasma- or endoplasmic reticulum membrane. Thus, the properties of the whole CK perception apparatuses in early-divergent lineages were demonstrated. Data show that during land plant evolution there was a diversification of the ligand specificity of various CHKs, in particular, the rise in preference for trans-zeatin over cis-zeatin, which indicates a steadily increasing specialization of receptors to various CKs. Finally, this distinct preference of individual receptors to different CK versions culminated in vascular plants, especially angiosperms.


2021 ◽  
Vol 22 (23) ◽  
pp. 12794
Author(s):  
Yasuyuki Yokosaki ◽  
Norihisa Nishimichi

A huge effort has been devoted to developing drugs targeting integrins over 30 years, because of the primary roles of integrins in the cell-matrix milieu. Five αv-containing integrins, in the 24 family members, have been a central target of fibrosis. Currently, a small molecule against αvβ1 is undergoing a clinical trial for NASH-associated fibrosis as a rare agent aiming at fibrogenesis. Latent TGFβ activation, a distinct talent of αv-integrins, has been intriguing as a therapeutic target. None of the αv-integrin inhibitors, however, has been in the clinical market. αv-integrins commonly recognize an Arg-Gly-Asp (RGD) sequence, and thus the pharmacophore of inhibitors for the 5-integrins is based on the same RGD structure. The RGD preference of the integrins, at the same time, dilutes ligand specificity, as the 5-integrins share ligands containing RGD sequence such as fibronectin. With the inherent little specificity in both drugs and targets, “disease specificity” has become less important for the inhibitors than blocking as many αv-integrins. In fact, an almighty inhibitor for αv-integrins, pan-αv, was in a clinical trial. On the contrary, approved integrin inhibitors are all specific to target integrins, which are expressed in a cell-type specific manner: αIIbβ3 on platelets, α4β1, α4β7 and αLβ2 on leukocytes. Herein, “disease specific” integrins would serve as attractive targets. α8β1 and α11β1 are selectively expressed in hepatic stellate cells (HSCs) and distinctively induced upon culture activation. The exceptional specificity to activated HSCs reflects a rather “pathology specific” nature of these new integrins. The monoclonal antibodies against α8β1 and α11β1 in preclinical examinations may illuminate the road to the first medical agents.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Trishnamoni Gautom ◽  
Dharmendra Dheeman ◽  
Colin Levy ◽  
Thomas Butterfield ◽  
Guadalupe Alvarez Gonzalez ◽  
...  

AbstractBiological degradation of Polyethylene terephthalate (PET) plastic and assimilation of the corresponding monomers ethylene glycol and terephthalate (TPA) into central metabolism offers an attractive route for bio-based molecular recycling and bioremediation applications. A key step is the cellular uptake of the non-permeable TPA into bacterial cells which has been shown to be dependent upon the presence of the key tphC gene. However, little is known from a biochemical and structural perspective about the encoded solute binding protein, TphC. Here, we report the biochemical and structural characterisation of TphC in both open and TPA-bound closed conformations. This analysis demonstrates the narrow ligand specificity of TphC towards aromatic para-substituted dicarboxylates, such as TPA and closely related analogues. Further phylogenetic and genomic context analysis of the tph genes reveals homologous operons as a genetic resource for future biotechnological and metabolic engineering efforts towards circular plastic bio-economy solutions.


Author(s):  
Yasuyuki Yokosaki ◽  
Norohisa Nishimichi

Huge effort has been devoted to developing drugs targeting integrins over 30 years, because of the primary roles of integrins in the cell-matrix milieu. Five αv-containing integrins, in the 24 family members, have been a central target of fibrosis. Currently, a small molecule against αvβ1 is undergoing a clinical trial for NASH-associated fibrosis as a rare reagent aiming at fibrogenesis. Latent TGFβ activation, a distinct talent of αv-integrins, has been intriguing as therapeutic target. None of the αv-integrin inhibitors, however, has been in the clinical market. αv-integrins commonly recognize an Arg-Gly-Asp (RGD) sequence, and thus the pharmacophore of inhibitors for the 5-integrins is based on the same RGD structure. The RGD preference of the integrins, at the same time, dilutes ligand specificity, as the 5-integrins share ligands containing RGD sequence such as fibronectin. With the inherent little specificity in both drugs and targets, “disease specificity” has become less important for the inhibitors than blocking as many αv-integrins. In fact, an almighty inhibitor for αv-integrins, pan-αv, was in a clinical trial. On the contrary, approved integrin inhibitors are all specific to target integrins, which are expressed in cell-type specific manner: αIIbβ3 on platelets, α4β1, α4β7 and αLβ2 on leukocytes. Herein, “disease specific” integrins would serve as attractive targets. α8β1 and α11β1 are selectively expressed in hepatic stellate cells (HSCs) and distinctively induced upon culture activation. The exceptional specificity to activated HSCs reflects rather “pathology specific” nature of these new integrins. The monoclonal antibodies against α8β1 and α11β1 in preclinical examinations may illuminate the road to the first medical reagents.


2021 ◽  
Author(s):  
Stephanie E Martinez ◽  
Caitlin E Conn ◽  
Angelica M Guercio ◽  
Claudia Sepulveda ◽  
Christopher J Fiscus ◽  
...  

Karrikins (KARs) are chemicals in smoke that can enhance germination of many plants. Lactuca sativa cv. Grand Rapids (lettuce), germinates in the presence of nanomolar karrikinolide (KAR1). We found that lettuce is much less responsive to KAR2 or a mixture of synthetic strigolactone analogs, rac-GR24. We investigated the molecular basis of selective and sensitive KAR1 perception in lettuce. The lettuce genome contains two copies of KARRIKIN INSENSITIVE2 (KAI2), a receptor that is required for KAR responses in Arabidopsis thaliana. LsKAI2b is more highly expressed than LsKAI2a in dry achenes and during early stages of seed imbibition. Through cross-species complementation assays in Arabidopsis we found that LsKAI2b confers robust responses to KAR1, but LsKAI2a does not. Therefore, LsKAI2b likely mediates KAR1 responses in lettuce. We compared homology models of the ligand-binding pockets of KAI2 proteins from lettuce and a fire follower, Emmenanthe penduliflora. This identified pocket residues 96, 124, 139, and 161 as candidates that influence the ligand-specificity of KAI2. Further support for the significance of these residues was found through a broader comparison of pocket residue conservation among 324 asterid KAI2 proteins. We tested the effects of substitutions at these four positions in Arabidopsis thaliana KAI2 and found that a broad array of responses to KAR1, KAR2, and rac-GR24 could be achieved.


Sign in / Sign up

Export Citation Format

Share Document