scholarly journals The impact of global selection on local adaptation and reproductive isolation

2019 ◽  
Author(s):  
Gertjan Bisschop ◽  
Derek Setter ◽  
Marina Rafajlović ◽  
Stuart J.E. Baird ◽  
Konrad Lohse

AbstractDespite the homogenising effect of strong gene flow between two populations, adaptation under symmetric divergent selection pressures results in partial reproductive isolation: adaptive substitutions act as local barriers to gene flow, and if divergent selection continues unimpeded, this will result in complete reproductive isolation of the two populations, i.e. speciation. However, a key issue in framing the process of speciation as a tension between local adaptation and the homogenising force of gene flow is that the mutation process is blind to changes in the environment and therefore tends to limit adaptation. Here we investigate how globally beneficial mutations (GBMs) affect divergent local adaptation and reproductive isolation. When phenotypic divergence is finite, we show that the presence of GBMs limits local adaptation, generating a persistent genetic load at the loci which contribute to the trait under divergent selection and reducing genome-wide divergence. Furthermore, we show that while GBMs cannot prohibit the process of continuous differentiation, they induce a substantial delay in the genome-wide shutdown of gene flow.


2020 ◽  
Vol 375 (1806) ◽  
pp. 20190531 ◽  
Author(s):  
Gertjan Bisschop ◽  
Derek Setter ◽  
Marina Rafajlović ◽  
Stuart J. E. Baird ◽  
Konrad Lohse

Despite the homogenizing effect of strong gene flow between two populations, adaptation under symmetric divergent selection pressures results in partial reproductive isolation: adaptive substitutions act as local barriers to gene flow, and if divergent selection continues unimpeded, this will result in complete reproductive isolation of the two populations, i.e. speciation. However, a key issue in framing the process of speciation as a tension between local adaptation and the homogenizing force of gene flow is that the mutation process is blind to changes in the environment and therefore tends to limit adaptation. Here we investigate how globally beneficial mutations (GBMs) affect divergent local adaptation and reproductive isolation. When phenotypic divergence is finite, we show that the presence of GBMs limits local adaptation, generating a persistent genetic load at the loci that contribute to the trait under divergent selection and reducing genome-wide divergence. Furthermore, we show that while GBMs cannot prohibit the process of continuous differentiation, they induce a substantial delay in the genome-wide shutdown of gene flow. This article is part of the theme issue ‘Towards the completion of speciation: the evolution of reproductive isolation beyond the first barriers’.



2020 ◽  
Vol 375 (1806) ◽  
pp. 20190532 ◽  
Author(s):  
Alexandre Blanckaert ◽  
Claudia Bank ◽  
Joachim Hermisson

Gene flow tends to impede the accumulation of genetic divergence. Here, we determine the limits for the evolution of postzygotic reproductive isolation in a model of two populations that are connected by gene flow. We consider two selective mechanisms for the creation and maintenance of a genetic barrier: local adaptation leads to divergence among incipient species due to selection against migrants, and Dobzhansky–Muller incompatibilities (DMIs) reinforce the genetic barrier through selection against hybrids. In particular, we are interested in the maximum strength of the barrier under a limited amount of local adaptation, a challenge that many incipient species may initially face. We first confirm that with classical two-locus DMIs, the maximum amount of local adaptation is indeed a limit to the strength of a genetic barrier. However, with three or more loci and cryptic epistasis, this limit holds no longer. In particular, we identify a minimal configuration of three epistatically interacting mutations that is sufficient to confer strong reproductive isolation. This article is part of the theme issue ‘Towards the completion of speciation: the evolution of reproductive isolation beyond the first barriers’.



Author(s):  
Alexandre Blanckaert ◽  
Claudia Bank ◽  
Joachim Hermisson

AbstractGene flow tends to impede the accumulation of genetic divergence. Here, we determine the limits for the evolution of postzygotic reproductive isolation in a model of two populations that are connected by gene flow. We consider two selective mechanisms for the creation and maintenance of a genetic barrier: local adaptation leads to divergence among incipient species due to selection against migrants, and Dobzhansky-Muller incompatibilities (DMIs) reinforce the genetic barrier through selection against hybrids. In particular, we are interested in the maximum strength of the barrier under a limited amount of local adaptation, a challenge that may initially face many incipient species. We first confirm that with classical two-locus DMIs, the maximum amount of local adaptation is indeed a limit to the strength of a genetic barrier. However, with three or more loci and cryptic epistasis, this limit holds no longer. In particular, we identify a minimal configuration of three epistatically interacting mutations that is sufficient to confer strong reproductive isolation.



2020 ◽  
Vol 10 (9) ◽  
pp. 3061-3070 ◽  
Author(s):  
Marja E Heikkinen ◽  
Minna Ruokonen ◽  
Thomas A White ◽  
Michelle M Alexander ◽  
İslam Gündüz ◽  
...  

Abstract Hybridization has frequently been observed between wild and domestic species and can substantially impact genetic diversity of both counterparts. Geese show some of the highest levels of interspecific hybridization across all bird orders, and two of the goose species in the genus Anser have been domesticated providing an excellent opportunity for a joint study of domestication and hybridization. Until now, knowledge of the details of the goose domestication process has come from archaeological findings and historical writings supplemented with a few studies based on mitochondrial DNA. Here, we used genome-wide markers to make the first genome-based inference of the timing of European goose domestication. We also analyzed the impact of hybridization on the genome-wide genetic variation in current populations of the European domestic goose and its wild progenitor: the graylag goose (Anser anser). Our dataset consisted of 58 wild graylags sampled around Eurasia and 75 domestic geese representing 14 breeds genotyped for 33,527 single nucleotide polymorphisms. Demographic reconstruction and clustering analysis suggested that divergence between wild and domestic geese around 5,300 generations ago was followed by long-term genetic exchange, and that graylag populations have 3.2–58.0% admixture proportions with domestic geese, with distinct geographic patterns. Surprisingly, many modern European breeds share considerable (> 10%) ancestry with the Chinese domestic geese that is derived from the swan goose Anser cygnoid. We show that the domestication process can progress despite continued and pervasive gene flow from the wild form.



Author(s):  
Tyler K. Chafin ◽  
Marlis R. Douglas ◽  
Michael E. Douglas

AbstractHybridization is well recognized as a driver of speciation, yet it often remains difficult to parse phylogenomically in that post-speciation gene flow frequently supersedes an ancestral signal. Here we examined how interactions between recombination and gene flow shaped the phylogenomic landscape of red wolf to create non-random retention of introgressed ancestry. Our re-analyses of genomic data recapitulate fossil evidence by demonstrating red wolf was indeed extant and isolated prior to more recent admixture with other North American canids. Its more ancient divergence, now sequestered within low-recombinant regions on the X-chromosome (i.e., chromosomal ‘refugia’), is effectively masked by multiple, successive waves of secondary introgression that now dominate its autosomal ancestry. These interpretations are congruent with more theoretical explanations that describe the manner by which introgression can be localized within the genome through recombination and selection. They also tacitly support the large-X effect, i.e., the manner by which loci that contribute to reproductive isolation can be enriched on the X-chromosome. By contrast, similar, high recombinant regions were also found as enriched within very shallow gene trees, thus reflecting post-speciation gene flow and a compression of divergence estimates to 1/20th of that found in recombination ‘cold spots’. Our results effectively reconcile conflicting hypotheses regarding the impact of hybridization on evolution of North American canids and support an emerging framework within which the analysis of a phylogenomic landscape structured by recombination can be used to successfully address the macroevolutionary implications of hybridization.



Author(s):  
Alejandro Llanos-Garrido ◽  
Javier Pérez-Tris ◽  
José Díaz

Usually, adaptive phenotypic differentiation is paralleled by genetic divergence between locally adapted populations. However, adaptation can also happen in a scenario of non-significant genetic divergence due to intense gene flow and/or recent differentiation. While this phenomenon is rarely published, findings on incipient ecologically-driven divergence or isolation by adaptation are relatively common, which could confound our understanding about the frequency at which they actually occur in nature. Here, we explore genome-wide traces of divergence between two populations of the lacertid lizard Psammodromus algirus separated by a 600 m elevational gradient. These populations seem to be differentially adapted to their environments despite showing low levels of genetic differentiation (according to previously studies of mtDNA and microsatellite data). We performed a search for outliers (i.e. loci subject to selection) trying to identify specific loci with FST statistics significantly higher than those expected on the basis of overall, genome-wide estimates of genetic divergence. We find that local phenotypic adaptation (in terms of a wide diversity of characters) was not accompanied by genome-wide differentiation, even when we maximized the chances of unveiling such differentiation at particular loci with FST-based outlier detection tests. Instead, our analyses confirmed the lack of differentiation on the basis of more than 70,000 SNPs, which is concordant with a scenario of local adaptation without any degree of isolation by environment. Our results add evidence to previous studies in which local adaptation does not lead to any kind of isolation (or early stages of ecological speciation), but maintains phenotypic divergence despite the lack of a differentiated genomic background.



2019 ◽  
Author(s):  
Linda Ongaro ◽  
Marilia O. Scliar ◽  
Rodrigo Flores ◽  
Alessandro Raveane ◽  
Davide Marnetto ◽  
...  

AbstractThe human genetic diversity of the Americas has been shaped by several events of gene flow that have continued since the Colonial Era and the Atlantic slave trade. Moreover, multiple waves of migration followed by local admixture occurred in the last two centuries, the impact of which has been largely unexplored.Here we compiled a genome-wide dataset of ∼12,000 individuals from twelve American countries and ∼6,000 individuals from worldwide populations and applied haplotype-based methods to investigate how historical movements from outside the New World affected i) the genetic structure, ii) the admixture profile, iii) the demographic history and iv) sex-biased gene-flow dynamics, of the Americas.We revealed a high degree of complexity underlying the genetic contribution of European and African populations in North and South America, from both geographic and temporal perspectives, identifying previously unreported sources related to Italy, the Middle East and to specific regions of Africa.



2018 ◽  
Author(s):  
Matteo Tomasini ◽  
Stephan Peischl

AbstractWe study the establishment probabilities of locally adapted mutations using a multitype branching process framework. We find a surprisingly simple and intuitive analytical approximation for the establishment probabilities in a symmetric two-deme model under the assumption of weak (positive) selection. This is the first analytical closed-form approximation for arbitrary migration rate to appear in the literature. We find that the establishment probability lies between the weak and the strong migration limits if we condition the origin of the mutation to the deme where it is advantageous. This is not the case when we condition the mutation to first occur in a deme where it is disadvantageous. In this case we find that an intermediate migration rate maximizes the probability of establishment. We extend our results to the cases of multiple demes, two demes with asymmetric rates of gene flow, and asymmetric carrying capacities. The latter case allows us to illustrate how density regulation can affect establishment probabilities. Finally we use our results to investigate the role of gene flow on the rate of local adaptation and identify cases in which intermediate amounts of gene flow facilitate the rate of local adaptation as compared to two populations without gene flow.



2019 ◽  
Vol 128 (4) ◽  
pp. 952-962 ◽  
Author(s):  
Javier Pérez-Tris ◽  
Alejandro Llanos-Garrido ◽  
Paul Bloor ◽  
Roberto Carbonell ◽  
José Luis Tellería ◽  
...  

Abstract Isolation owing to anthropogenic habitat fragmentation is expected to increase the homozygosity of individuals, which might reduce their fitness as a result of inbreeding depression. Using samples from a fragmented population of the lizard Psammodromus algirus, for which we had data about two correlates of fitness, we genotyped individuals for six microsatellite loci that correctly capture genome-wide individual homozygosity of these lizards (as validated with an independent sample of lizards genotyped for both these microsatellites and > 70 000 single nucleotide polymorphisms). Our data revealed genetic structure at a very small geographical scale, which was compatible with restricted gene flow among populations disconnected in a matrix of inhospitable habitat. Lizards from the same fragment were genetically more related to one another than expected by chance, and individual homozygosity was greater in small than in large fragments. Within fragments, individual homozygosity was negatively associated with adult body size and clutch mass, revealing a link among reduced gene flow, increased homozygosity and lowered fitness that might reduce population viability deterministically. Our results contribute to mounting evidence of the impact of the loss of genetic diversity on fragmented wild populations.



2018 ◽  
Author(s):  
Yann XC Bourgeois ◽  
Joris AM Bertrand ◽  
Boris Delahaie ◽  
Hélène Holota ◽  
Christophe Thébaud ◽  
...  

AbstractRecently diverged taxa showing marked phenotypic and ecological diversity are optimal systems to test the relative importance of two major evolutionary mechanisms, adaptation to local ecological conditions by natural selection, or mechanisms of reproductive isolation such as assortative mating mediated by sexually selected mating signals or post-zygotic incompatibilities. Whereas local adaptation is expected to affect many loci throughout the genome, traits acting as mating signals are expected to be located on sex chromosomes and have a simple genetic basis. We used genome-wide markers to test these predictions in Reunion Island’s gray-white eye (Zosterops borbonicus), which has recently diversified into five distinct plumage forms. Two of them correspond to a polymorphic highland population that is separated by a steep ecological gradient from three distinct lowland forms that show narrow contact zones in plumage color traits, yet no association with environmental variables. An analysis of population structure using genome-wide SNP loci revealed two major clades corresponding to highland and lowland forms, respectively, with the latter separated further into three independent lineages corresponding to plumage forms. Coalescent tests of alternative demographic scenarios provided support for divergence of highland and lowland lineages with an intensification of gene flow in the last 60,000 years. Landscapes of genomic variation revealed that signatures of selection associated with elevation are found at multiple regions across the genome, whereas most loci associated with the lowland forms are located on the Z sex chromosome. A gene ontology analysis identified TYRP1, a Z-linked color gene, as a likely candidate locus underlying color variation among lowland forms. Our results are consistent with the role of natural selection in driving the divergence of locally adapted highland populations, and the role of sexual selection in differentiating lowland forms through reproductive isolation mechanisms, showing that both modes of lineage divergence can take place at very small geographic scales in birds.



Sign in / Sign up

Export Citation Format

Share Document