scholarly journals Genome-wide local ancestries discriminate homoploid hybrid speciation from secondary introgression in the red wolf (Canidae: Canis rufus)

Author(s):  
Tyler K. Chafin ◽  
Marlis R. Douglas ◽  
Michael E. Douglas

AbstractHybridization is well recognized as a driver of speciation, yet it often remains difficult to parse phylogenomically in that post-speciation gene flow frequently supersedes an ancestral signal. Here we examined how interactions between recombination and gene flow shaped the phylogenomic landscape of red wolf to create non-random retention of introgressed ancestry. Our re-analyses of genomic data recapitulate fossil evidence by demonstrating red wolf was indeed extant and isolated prior to more recent admixture with other North American canids. Its more ancient divergence, now sequestered within low-recombinant regions on the X-chromosome (i.e., chromosomal ‘refugia’), is effectively masked by multiple, successive waves of secondary introgression that now dominate its autosomal ancestry. These interpretations are congruent with more theoretical explanations that describe the manner by which introgression can be localized within the genome through recombination and selection. They also tacitly support the large-X effect, i.e., the manner by which loci that contribute to reproductive isolation can be enriched on the X-chromosome. By contrast, similar, high recombinant regions were also found as enriched within very shallow gene trees, thus reflecting post-speciation gene flow and a compression of divergence estimates to 1/20th of that found in recombination ‘cold spots’. Our results effectively reconcile conflicting hypotheses regarding the impact of hybridization on evolution of North American canids and support an emerging framework within which the analysis of a phylogenomic landscape structured by recombination can be used to successfully address the macroevolutionary implications of hybridization.

2020 ◽  
Vol 10 (9) ◽  
pp. 3061-3070 ◽  
Author(s):  
Marja E Heikkinen ◽  
Minna Ruokonen ◽  
Thomas A White ◽  
Michelle M Alexander ◽  
İslam Gündüz ◽  
...  

Abstract Hybridization has frequently been observed between wild and domestic species and can substantially impact genetic diversity of both counterparts. Geese show some of the highest levels of interspecific hybridization across all bird orders, and two of the goose species in the genus Anser have been domesticated providing an excellent opportunity for a joint study of domestication and hybridization. Until now, knowledge of the details of the goose domestication process has come from archaeological findings and historical writings supplemented with a few studies based on mitochondrial DNA. Here, we used genome-wide markers to make the first genome-based inference of the timing of European goose domestication. We also analyzed the impact of hybridization on the genome-wide genetic variation in current populations of the European domestic goose and its wild progenitor: the graylag goose (Anser anser). Our dataset consisted of 58 wild graylags sampled around Eurasia and 75 domestic geese representing 14 breeds genotyped for 33,527 single nucleotide polymorphisms. Demographic reconstruction and clustering analysis suggested that divergence between wild and domestic geese around 5,300 generations ago was followed by long-term genetic exchange, and that graylag populations have 3.2–58.0% admixture proportions with domestic geese, with distinct geographic patterns. Surprisingly, many modern European breeds share considerable (> 10%) ancestry with the Chinese domestic geese that is derived from the swan goose Anser cygnoid. We show that the domestication process can progress despite continued and pervasive gene flow from the wild form.


2019 ◽  
Author(s):  
Linda Ongaro ◽  
Marilia O. Scliar ◽  
Rodrigo Flores ◽  
Alessandro Raveane ◽  
Davide Marnetto ◽  
...  

AbstractThe human genetic diversity of the Americas has been shaped by several events of gene flow that have continued since the Colonial Era and the Atlantic slave trade. Moreover, multiple waves of migration followed by local admixture occurred in the last two centuries, the impact of which has been largely unexplored.Here we compiled a genome-wide dataset of ∼12,000 individuals from twelve American countries and ∼6,000 individuals from worldwide populations and applied haplotype-based methods to investigate how historical movements from outside the New World affected i) the genetic structure, ii) the admixture profile, iii) the demographic history and iv) sex-biased gene-flow dynamics, of the Americas.We revealed a high degree of complexity underlying the genetic contribution of European and African populations in North and South America, from both geographic and temporal perspectives, identifying previously unreported sources related to Italy, the Middle East and to specific regions of Africa.


2018 ◽  
Author(s):  
Krzysztof M. Kozak ◽  
W. Owen McMillan ◽  
Mathieu Joron ◽  
Christopher D. Jiggins

ABSTRACTHow frequent is gene flow between species? The pattern of evolution is typically portrayed as a phylogenetic tree, implying that speciation is a series of splits between lineages. Yet gene flow between good species is increasingly recognized as an important mechanism in the diversification of radiations, often spreading adaptive traits and leading to a complex pattern of phylogenetic incongruence. This process has thus far been studied in cases involving few species, or geographically restricted to spaces like islands, but not on the scale of a continental radiation. Previous studies have documented gene flow, adaptive introgression and hybrid speciation in a small subsection of the charismatic Neotropical butterflies Heliconius. Using genome-wide resequencing of 40 out of 45 species in the genus we demonstrate for the first time that admixture has played a role throughout the evolution of Heliconius and the sister genus Eueides. Modelling of phylogenetic networks based on 6848 orthologous autosomal genes (Maximum Pseudo-Likelihood Networks) or 5,483,419 high quality SNPs (Ancestral Recombination Graph) uncovers nine new cases of interspecific gene flow at up to half of the genome. However, f4 statistics of admixture show that the extent of the process has varied between subgenera. Evidence for introgression is found at all five loci controlling the colour and shape of the mimetic wing patterns, including in the putative hybrid species H. hecalesia, characterised by an unusual hindwing. Due to hybridization and incomplete coalescence during rapid speciation, individual gene trees show rampant discordance. Although reduced gene flow and faster coalescence are expected at the Z chromosome, we discover high levels of conflict between the 416 sex-linked loci. Despite this discordant pattern, both concatenation and multispecies coalescent approaches yield surprisingly consistent and fully supported genome-wide phylogenies. We conclude that the imposition of the bifurcating tree model without testing for interspecific gene flow may distort our perception of adaptive radiations and thus the ability to study trait evolution in a comparative framework.


2019 ◽  
Vol 128 (4) ◽  
pp. 952-962 ◽  
Author(s):  
Javier Pérez-Tris ◽  
Alejandro Llanos-Garrido ◽  
Paul Bloor ◽  
Roberto Carbonell ◽  
José Luis Tellería ◽  
...  

Abstract Isolation owing to anthropogenic habitat fragmentation is expected to increase the homozygosity of individuals, which might reduce their fitness as a result of inbreeding depression. Using samples from a fragmented population of the lizard Psammodromus algirus, for which we had data about two correlates of fitness, we genotyped individuals for six microsatellite loci that correctly capture genome-wide individual homozygosity of these lizards (as validated with an independent sample of lizards genotyped for both these microsatellites and > 70 000 single nucleotide polymorphisms). Our data revealed genetic structure at a very small geographical scale, which was compatible with restricted gene flow among populations disconnected in a matrix of inhospitable habitat. Lizards from the same fragment were genetically more related to one another than expected by chance, and individual homozygosity was greater in small than in large fragments. Within fragments, individual homozygosity was negatively associated with adult body size and clutch mass, revealing a link among reduced gene flow, increased homozygosity and lowered fitness that might reduce population viability deterministically. Our results contribute to mounting evidence of the impact of the loss of genetic diversity on fragmented wild populations.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Marta Guindo-Martínez ◽  
◽  
Ramon Amela ◽  
Silvia Bonàs-Guarch ◽  
Montserrat Puiggròs ◽  
...  

AbstractGenome-wide association studies (GWAS) are not fully comprehensive, as current strategies typically test only the additive model, exclude the X chromosome, and use only one reference panel for genotype imputation. We implement an extensive GWAS strategy, GUIDANCE, which improves genotype imputation by using multiple reference panels and includes the analysis of the X chromosome and non-additive models to test for association. We apply this methodology to 62,281 subjects across 22 age-related diseases and identify 94 genome-wide associated loci, including 26 previously unreported. Moreover, we observe that 27.7% of the 94 loci are missed if we use standard imputation strategies with a single reference panel, such as HRC, and only test the additive model. Among the new findings, we identify three novel low-frequency recessive variants with odds ratios larger than 4, which need at least a three-fold larger sample size to be detected under the additive model. This study highlights the benefits of applying innovative strategies to better uncover the genetic architecture of complex diseases.


2019 ◽  
Author(s):  
Marja E. Heikkinen ◽  
Minna Ruokonen ◽  
Thomas A. White ◽  
Michelle M. Alexander ◽  
İslam Gündüz ◽  
...  

AbstractHybridization has frequently been observed between wild and domestic species and can substantially impact genetic diversity of both counterparts. Geese show some of the highest levels of interspecific hybridization across all bird orders, and two of the goose species in genus Anser have been domesticated providing excellent opportunity for joint study of domestication and hybridization. Until now, knowledge on the details of the goose domestication process has come from archaeological findings and historical writings supplemented with few studies based on mitochondrial DNA. Here, we used genome-wide markers to make the first genome-based inference of the timing of European goose domestication. We also analyzed the impact of hybridization on the genome-wide genetic variation in current populations of the European domestic goose and its wild progenitor: the greylag goose (Anser anser). Our dataset consisted of 58 wild greylags sampled around Eurasia and 75 domestic geese representing 14 breeds genotyped for 33,527 single nucleotide polymorphisms. Demographic reconstruction and clustering analysis suggested that divergence between wild and domestic geese around 5,300 generations ago was followed by long-term genetic exchange, and that greylag populations have 3.2–58.0% admixture proportions with domestic geese, with distinct geographic patterns. Surprisingly, many modern European breeds share considerable (> 10%) ancestry with Chinese domestic geese that is derived from the swan goose Anser cygnoid. We show that domestication process can progress despite continued and pervasive gene flow from the wild form.Significance StatementReproductive isolation between conspecific wild and domestic populations is a cornerstone of the domestication process, yet gene flow between such wild and domestic populations has been frequently documented. European domestic geese and their wild progenitor (greylags) co-occur and can hybridize and we show that they represent a particularly persuasive case where wild and domestic populations are not isolated gene pools. Our study makes a first genome-based estimate of goose domestication, which up to now has mostly relied on archaeological findings and historical writings. We show ongoing gene flow between greylags and European domestic geese following domestication, but we also observe a surprisingly large contribution of Chinese domestic geese (a separate species) to the genetic make-up of European domestic geese.


Author(s):  
Thomas C. Nelson ◽  
Angela M. Stathos ◽  
Daniel D. Vanderpool ◽  
Findley R. Finseth ◽  
Yao-wu Yuan ◽  
...  

AbstractInferences about past processes of adaptation and speciation require a gene-scale and genome-wide understanding of the evolutionary history of diverging taxa. In this study, we use genome-wide capture of nuclear gene sequences, plus skimming of organellar sequences, to investigate the phylogenomics of monkeyflowers in Mimulus section Erythranthe (27 accessions from seven species). Taxa within Erythranthe, particularly the parapatric and putatively sister species M. lewisii (bee-pollinated) and M. cardinalis (hummingbird-pollinated), have been a model system for investigating the ecological genetics of speciation and adaptation for over five decades. Across >8000 nuclear loci, multiple methods resolve a predominant species tree in which M. cardinalis groups with other hummingbird-pollinated taxa (37% of gene trees), rather than being sister to M. lewisii (32% of gene trees). We independently corroborate a single evolution of hummingbird pollination syndrome in Erythranthe by demonstrating functional redundancy in genetic complementation tests of floral traits in hybrids; together, these analyses overturn a textbook case of pollination-syndrome convergence. Strong asymmetries in allele-sharing (Patterson’s D-statistic and related tests) indicate that gene-tree discordance reflects ancient and recent introgression rather than incomplete lineage sorting. Consistent with abundant introgression blurring the history of divergence, low-recombination and adaptation-associated regions support the new species tree, while high-recombination regions generate phylogenetic evidence for sister status for M. lewisii and M. cardinalis. Population-level sampling of core taxa also revealed two instances of chloroplast capture, with Sierran M. lewisii and Southern Californian M. parishii each carrying organelle genomes nested within respective sympatric M. cardinalis clades. A recent organellar transfer from M. cardinalis, an outcrosser where selfish cytonuclear dynamics are more likely, may account for the unexpected cytoplasmic male sterility effects of selfer M. parishii organelles in hybrids with M. lewisii. Overall, our phylogenomic results reveal extensive reticulation throughout the evolutionary history of a classic monkeyflower radiation, suggesting that natural selection (re-)assembles and maintains species-diagnostic traits and barriers in the face of gene flow. Our findings further underline the challenges, even in reproductively isolated species, in distinguishing re-use of adaptive alleles from true convergence and emphasize the value of a phylogenomic framework for reconstructing the evolutionary genetics of adaptation and speciation.Author SummaryAdaptive radiations, which involve both divergent evolution of new traits and recurrent trait evolution, provide insight into the processes that generate and maintain organismal diversity. However, rapid radiations also generate particular challenges for inferring the evolutionary history and mechanistic basis of adaptation and speciation, as multiple processes can cause different parts of the genome to have distinct phylogenetic trees. Thus, inferences about the mode and timing of divergence and the causes of parallel trait evolution require a fine-grained understanding of the flow of genomic variation through time. In this study, we used genome-wide sampling of thousands of genes to re-construct the evolutionary histories of a model plant radiation, the monkeyflowers of Mimulus section Erythranthe. Work over the past half-century has established the parapatric and putatively sister species M. lewisii (bee-pollinated) and M. cardinalis (hummingbird-pollinated, as are three other species in the section) as textbook examples of both rapid speciation via shifts in pollination syndrome and convergent evolution of floral syndromes. Our phylogenomic analyses re-write both of these stories, placing M. cardinalis in a clade with other hummingbird-pollinated taxa and demonstrating that abundant introgression between ancestral lineages as well as in areas of current sympatry contributes to the real (but misleading) affinities between M. cardinalis and M. lewisii. This work illustrates the pervasive influence of gene flow and introgression during adaptive radiation and speciation, and underlines the necessity of a gene-scale and genome-wide phylogenomics framework for understanding trait divergence, even among well-established species.


2020 ◽  
Author(s):  
Marta Guindo-Martínez ◽  
Ramon Amela ◽  
Silvia Bonàs-Guarch ◽  
Montserrat Puiggròs ◽  
Cecilia Salvoro ◽  
...  

AbstractGenome-wide association studies (GWAS) are not fully comprehensive as current strategies typically test only the additive model, exclude the X chromosome, and use only one reference panel for genotype imputation. We implemented an extensive GWAS strategy, GUIDANCE, which improves genotype imputation by using multiple reference panels, includes the analysis of the X chromosome and non-additive models to test for association. We applied this methodology to 62,281 subjects across 22 age-related diseases and identified 94 genome-wide associated loci, including 26 previously unreported. We observed that 27.6% of the 94 loci would be missed if we only used standard imputation strategies and only tested the additive model. Among the new findings, we identified three novel low-frequency recessive variants with odds ratios larger than 4, which would need at least a three-fold larger sample size to be detected under the additive model. This study highlights the benefits of applying innovative strategies to better uncover the genetic architecture of complex diseases.


2003 ◽  
Vol 81 (5) ◽  
pp. 936-940 ◽  
Author(s):  
P J Wilson ◽  
S Grewal ◽  
T McFadden ◽  
R C Chambers ◽  
B N White

We analysed the mitochondrial DNA (mtDNA) from two historical samples of eastern North American wolves: the last wolf reported to have been killed in northern New York State (ca. 1890s) and a wolf killed in Maine in the 1880s. These wolves represent eastern wolves, presently classified as the gray wolf (Canis lupus) subspecies Canis lupus lycaon, which were present well before the expansion of western coyotes (Canis latrans) into these regions. We show the absence of gray wolf mtDNA in these wolves. They both contain New World mtDNA, supporting previous findings of a North American evolution of the eastern timber wolf (originally classified as Canis lycaon) and red wolf (Canis rufus) independently of the gray wolf, which originated in Eurasia. The presence of a second wolf species in North America has important implications for the conservation and management of wolves. In the upper Great Lakes region, wolves of both species may exist in sympatry or interbreed with each other, which impacts the accuracy of estimates of numbers of wolves of each species within this geographic region. Furthermore, the historical distribution of the eastern timber wolf (C. lycaon), as revealed by these skin samples, has important implications for the reintroduction of wolves into the northeastern U.S. states, such as New York and Maine.


Sign in / Sign up

Export Citation Format

Share Document