isolation by environment
Recently Published Documents


TOTAL DOCUMENTS

66
(FIVE YEARS 49)

H-INDEX

10
(FIVE YEARS 3)

mBio ◽  
2022 ◽  
Author(s):  
Jiao Wang ◽  
Yisong Li ◽  
Adrián A. Pinto-Tomás ◽  
Kun Cheng ◽  
Ying Huang

Both isolation by distance and isolation by environment occur in bacteria, and different diversification patterns may apply to different species. Streptomyces species, typified by producing useful natural products, are widespread in nature and possess high genetic diversity. However, the ecological processes and evolutionary mechanisms that shape their distribution are not well understood.


Forests ◽  
2021 ◽  
Vol 12 (12) ◽  
pp. 1630
Author(s):  
Antonio Vidaković ◽  
Zlatko Liber ◽  
Zlatko Šatović ◽  
Marilena Idžojtić ◽  
Ida Volenec ◽  
...  

Almond-leaved pear (Pyrus spinosa Forssk., Rosaceae) is a scientifically poorly researched and often overlooked Mediterranean species. It is an insect-pollinated and animal-dispersed spiny, deciduous shrub or a small tree, with high-quality wood and edible fruits. The aim of the study was to assess the phenotypic diversity of almond-leaved pear in the eastern Adriatic region. The examination of phenotypic diversity was based on a morphometric analysis of 17 populations using ten phenotypic traits of leaves. Varieties of multivariate statistical analyses were conducted to evaluate the within- and among-population diversity. In addition, the Mantel tests were used to test the correlations between geographic, environmental, and phenotypic differences among populations. High phenotypic variability was determined both among and within the studied populations. Leaf-size-related traits proved to be the most variable ones, in contrast to more uniform leaf shape traits. Furthermore, three groups of populations were detected using multivariate statistical analyses. The first group included trees from northern- and southernmost populations characterized by high annual precipitation. However, the trees from the second and third group were highly overlapped without a clear geographical pattern. In addition, we revealed that both environmental and geographical interactions proved to be responsible for the patterns of phenotypic variation between almond-leaved pear populations, indicating significant isolation by environment (IBE) and isolation by distance (IBD) patterns. Overall, our results provide useful information about phenotypic diversity of almond-leaved pear populations for further conservation, breeding, and afforestation programs.


2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Gustavo A. Silva-Arias ◽  
Lina Caballero-Villalobos ◽  
Giovanna C. Giudicelli ◽  
Loreta B. Freitas

Abstract Background Historical and ecological processes shape patterns of genetic diversity in plant species. Colonization to new environments and geographical landscape features determine, amongst other factors, genetic diversity within- and differentiation between-populations. We analyse the genetic diversity and population structure of Calibrachoa heterophylla to infer the influence of abiotic landscape features on the level of gene flow in this coastal species of the South Atlantic Coastal Plain. Results The C. heterophylla populations located on early-deposited coastal plain regions show higher genetic diversity than those closer to the sea. The genetic differentiation follows a pattern of isolation-by-distance. Landscape features, such as water bodies and wind corridors, and geographical distances equally explain the observed genetic differentiation, whereas the precipitation seasonality exhibits a strong signal for isolation-by-environment in marginal populations. The estimated levels of gene flow suggest that marginal populations had restricted immigration rates enhancing differentiation. Conclusions Topographical features related to coastal plain deposition history influence population differentiation in C. heterophylla. Gene flow is mainly restricted to nearby populations and facilitated by wind fields, albeit without any apparent influence of large water bodies. Furthermore, differential rainfall regimes in marginal populations seem to promote genetic differentiation.


2021 ◽  
Author(s):  
Zachary L Nikolakis ◽  
Richard Orton ◽  
Brian I Crother

Understanding the processes and mechanisms that promote lineage divergence is a central goal in evolutionary biology. For instance, studies investigating the spatial distribution of genomic variation often highlight biogeographic barriers underpinning geographic isolation, as well as patterns of isolation by environment and isolation by distance that can also lead to lineage divergence. However, the patterns and processes that shape genomic variation and drive lineage divergence may be taxa-specific, even across closely related taxa co-occurring within the same biogeographic region. Here, we use molecular data in the form of ultra-conserved elements (UCEs) to infer the evolutionary relationships and population genomic structure of the Eastern Pinesnake complex (Pituophis melanoleucus) – a polytypic wide-ranging species that occupies much of the Eastern Nearctic. In addition to inferring evolutionary relationships, population genomic structure, and gene flow, we also test relationships between genomic diversity and putative barriers to dispersal, environmental variation, and geographic distance. We present results that reveal shallow population genomic structure and ongoing gene flow, despite an extensive geographic range that transcends geographic features found to reduce gene flow among many taxa, including other squamate reptiles within the Eastern Nearctic. Further, our results indicate that the observed genomic diversity is spatially distributed as a pattern of isolation by distance and suggest that the current subspecific taxonomy do not adhere to independent lineages, but rather, show a significant amount of admixture across the entire P. melanoleucus range.


Author(s):  
Alejandro Llanos-Garrido ◽  
Javier Pérez-Tris ◽  
José Díaz

Usually, adaptive phenotypic differentiation is paralleled by genetic divergence between locally adapted populations. However, adaptation can also happen in a scenario of non-significant genetic divergence due to intense gene flow and/or recent differentiation. While this phenomenon is rarely published, findings on incipient ecologically-driven divergence or isolation by adaptation are relatively common, which could confound our understanding about the frequency at which they actually occur in nature. Here, we explore genome-wide traces of divergence between two populations of the lacertid lizard Psammodromus algirus separated by a 600 m elevational gradient. These populations seem to be differentially adapted to their environments despite showing low levels of genetic differentiation (according to previously studies of mtDNA and microsatellite data). We performed a search for outliers (i.e. loci subject to selection) trying to identify specific loci with FST statistics significantly higher than those expected on the basis of overall, genome-wide estimates of genetic divergence. We find that local phenotypic adaptation (in terms of a wide diversity of characters) was not accompanied by genome-wide differentiation, even when we maximized the chances of unveiling such differentiation at particular loci with FST-based outlier detection tests. Instead, our analyses confirmed the lack of differentiation on the basis of more than 70,000 SNPs, which is concordant with a scenario of local adaptation without any degree of isolation by environment. Our results add evidence to previous studies in which local adaptation does not lead to any kind of isolation (or early stages of ecological speciation), but maintains phenotypic divergence despite the lack of a differentiated genomic background.


2021 ◽  
Author(s):  
Marcel Glück ◽  
Julia C. Geue ◽  
Henri A. Thomassen

Background: The environment is a strong driver of genetic structure in many natural populations, yet often neglected in population genetic studies. This may be a particular problem in vagile species, where subtle structure cannot be explained by limitations to dispersal. These species might falsely be considered panmictic and hence potentially mismanaged. Here we analysed the genetic structure in an economically important and widespread pollinator, the buff-tailed bumble bee (Bombus terrestris), which is considered to be quasi-panmictic at mainland continental scales. We first quantified population structure in Romania and Bulgaria with spatially implicit Fst and Bayesian clustering analyses. We then incorporated environmental information to infer the influence of the permeability of the habitat matrix between populations (resistance distances) as well as environmental differences among sites in explaining population divergence. Results: Genetic structure of the buff-tailed bumble bee was subtle and not detected by Bayesian clustering. As expected, geographic distance and habitat permeability were not informative in explaining the spatial pattern of genetic divergence. Yet, environmental variables related to temperature, vegetation and topography were highly informative, explaining between 33 and 39% of the genetic variation observed. Conclusions: Where in the past spatially implicit approaches had repeatedly failed, incorporating environmental data proved to be highly beneficial in detecting and unravelling the drivers of genetic structure in this vagile and opportunistic species. Indeed, structure followed a pattern of isolation by environment, where the establishment of dispersers is limited by environmental differences among populations, resulting in the disruption of genetic connectivity and the divergence of populations through genetic drift and divergent natural selection. With this work, we highlight the potential of incorporating environmental differences among population locations to complement the more traditional approach of isolation by geographic distance, in order to obtain a holistic understanding of the processes driving structure in natural populations.


Author(s):  
Israel Borokini ◽  
Kelly Klingler ◽  
Mary Peacock

Habitat protection, by itself, is not sufficient to conserve range-restricted species with disjunct populations. Indeed, it becomes critical to characterize gene flow among the populations and factors that influence functional connectivity in order to design effective conservation programs for such species. In this study, we genotyped 314 individuals of Ivesia webberi, a United States federally threatened Great Basin Desert perennial forb using six microsatellite loci, to estimate genetic diversity and population genetic structure, as well as rates and direction of gene flow among 16 extant I. webberi populations. We assessed the effects of Euclidean distance, landscape features, and ecological dissimilarity on the genetic structure of the sampled populations, while also testing for a relationship between I. webberi genetic diversity and diversity in the vegetative communities. The results show low levels of genetic diversity overall (He = 0.200–0.441; Ho = 0.192–0.605) and high genetic differentiation among populations. Genetic diversity was structured along a geographic gradient, congruent with patterns of isolation by distance. Populations near the species’ range core have relatively high genetic diversity, supporting a central-marginal pattern, while peripheral populations have lower genetic diversity, significantly higher genetic distances, higher relatedness, and evidence of genetic bottlenecks. Genotype cluster admixture results support a predominant west to east gene flow pattern for populations near the species’ range center, as well as smaller genotype clusters with a narrow north to south distribution and little admixture, suggesting that dispersal direction and distance vary on the landscape. Pairwise genetic distance strongly correlates with actual evapotranspiration and precipitation, indicating a role for isolation by environment, which the observed phenological mismatches among the populations also support. The significant correlation between pairwise genetic distance and dissimilarity in the soil seed bank suggest that annual regeneration of the floristic communities contributes to the maintenance of genetic diversity in I. webberi.


2021 ◽  
Author(s):  
Ricardo Medina ◽  
Guinevere O.U. Wogan ◽  
Ke Bi ◽  
Flavia Termignoni‐García ◽  
Manuel Hernando Bernal ◽  
...  

Rice ◽  
2021 ◽  
Vol 14 (1) ◽  
Author(s):  
Di Cui ◽  
Cuifeng Tang ◽  
Hongfeng Lu ◽  
Jinmei Li ◽  
Xiaoding Ma ◽  
...  

Abstract Background Understanding and identifying the factors responsible for genetic differentiation is of fundamental importance for efficient utilization and conservation of traditional rice landraces. In this study, we examined the spatial genetic differentiation of 594 individuals sampled from 28 locations in Yunnan Province, China, covering a wide geographic distribution and diverse growing conditions. All 594 accessions were studied using ten unlinked target genes and 48 microsatellite loci, and the representative 108 accessions from the whole collection were sampled for resequencing. Results The genetic diversity of rice landraces was quite different geographically and exhibited a geographical decline from south to north in Yunnan, China. Population structure revealed that the rice landraces could be clearly differentiated into japonica and indica groups, respectively. In each group, the rice accessions could be further differentiated corresponded to their geographic locations, including three subgroups from northern, southern and middle locations. We found more obvious internal geographic structure in the japonica group than in the indica group. In the japonica group, we found that genetic and phenotypic differentiation were strongly related to geographical distance, suggesting a pattern of isolation by distance (IBD); this relationship remained highly significant when we controlled for environmental effects, where the likelihood of gene flow is inversely proportional to the distance between locations. Moreover, the gene flow also followed patterns of isolation by environment (IBE) whereby gene flow rates are higher in similar environments. We detected 314 and 216 regions had been differentially selected between Jap-N and Jap-S, Ind-N and Ind-S, respectively, and thus referred to as selection signatures for different geographic subgroups. We also observed a number of significant and interesting associations between loci and environmental factors, which implies adaptation to local environment. Conclusions Our findings highlight the influence of geographical isolation and environmental heterogeneity on the pattern of the gene flow, and demonstrate that both geographical isolation and environment drives adaptive divergence play dominant roles in the genetic differentiation of the rice landraces in Yunnan, China as a result of limited dispersal.


Sign in / Sign up

Export Citation Format

Share Document