scholarly journals Removal of Scanner Effects in Covariance Improves Multivariate Pattern Analysis in Neuroimaging Data

2019 ◽  
Author(s):  
Andrew A. Chen ◽  
Joanne C. Beer ◽  
Nicholas J. Tustison ◽  
Philip A. Cook ◽  
Russell T. Shinohara ◽  
...  

AbstractTo acquire larger samples for answering complex questions in neuroscience, researchers have increasingly turned to multi-site neuroimaging studies. However, these studies are hindered by differences in images acquired across multiple scanners. These effects have been shown to bias comparison between scanners, mask biologically meaningful associations, and even introduce spurious associations. To address this, the field has focused on harmonizing data by removing scanner-related effects in the mean and variance of measurements. Contemporaneously with the increase in popularity of multi-center imaging, the use of multivariate pattern analysis (MVPA) has also become commonplace. These approaches have been shown to provide improved sensitivity, specificity, and power due to their modeling the joint relationship across measurements in the brain. In this work, we demonstrate that methods for removing scanner effects in mean and variance may not be sufficient for MVPA. This stems from the fact that such methods fail to address how correlations between measurements can vary across scanners. Data from the Alzheimer’s Disease Neuroimaging Initiative is used to show that considerable differences in covariance exist across scanners and that popular harmonization techniques do not address this issue. We also propose a novel methodology that harmonizes covariance of multivariate image measurements across scanners and demonstrate its improved performance in data harmonization.

2014 ◽  
Vol 37 (2) ◽  
pp. 213-215 ◽  
Author(s):  
Nikolaas N. Oosterhof ◽  
Alison J. Wiggett ◽  
Emily S. Cross

AbstractCook et al. overstate the evidence supporting their associative account of mirror neurons in humans: most studies do not address a key property, action-specificity that generalizes across the visual and motor domains. Multivariate pattern analysis (MVPA) of neuroimaging data can address this concern, and we illustrate how MVPA can be used to test key predictions of their account.


2017 ◽  
Author(s):  
Fernando M. Ramírez

AbstractThe use of multivariate pattern analysis (MVPA) methods has enjoyed this past decade a rapid increase in popularity among neuroscientists. More recently, similarity-based multivariate methods aiming not only to extract information regarding the class membership of stimuli from their associated brain patterns, say, decode a face from a potato, but to understand the form of the underlying representational structure associated with stimulus dimensions of interest, say, 2D grating or 3D face orientation, have flourished under the name of Representational Similarity Analysis (RSA). However, data-preprocessing steps implemented prior to RSA can significantly change the covariance (and correlation) structure of the data, hence possibly leading to representational confusion—i.e., a researcher inferring that brain area A encodes information according to representational scheme X, and not Y, when the opposite is true. Here, I demonstrate with simulations that time-series demeaning (including z-scoring) can plausibly lead to representational confusion. Further, I expose potential interactions between the effects of data demeaning and how the brain happens to encode information. Finally, I emphasize the importance in the context of similarity analyses of at least occasionally explicitly considering the direction of pattern vectors in multivariate space, rather than focusing exclusively on the relative location of their endpoints. Overall, I expect this article will promote awareness of the impact of data demeaning on inferences regarding representational structure and neural coding.


NeuroImage ◽  
2017 ◽  
Vol 159 ◽  
pp. 449-458 ◽  
Author(s):  
Sarah Alizadeh ◽  
Hamidreza Jamalabadi ◽  
Monika Schönauer ◽  
Christian Leibold ◽  
Steffen Gais

2021 ◽  
Author(s):  
Kira Ashton ◽  
Benjamin Zinszer ◽  
Radoslaw Cichy ◽  
Charles Nelson ◽  
Richard Aslin ◽  
...  

Time-resolved multivariate pattern analysis (MVPA), a popular technique for analyzing magneto- and electro-encephalography (M/EEG) neuroimaging data, quantifies the extent and time-course by which neural representations support the discrimination of relevant stimuli dimensions. As EEG is widely used for infant neuroimaging, time-resolved MVPA of infant EEG data is a particularly promising tool for infant cognitive neuroscience. MVPA methods have recently been applied to common infant imaging methods such as EEG and fNIRS. In this tutorial, we provide and describe code to implement time-resolved, within-subject MVPA with infant EEG data. A pipeline for time-resolved MVPA based on linear SVM classification is described and implemented with accompanying code in both Matlab and Python. Results from a test dataset indicated that in both infants and adults this method reliably produced above chance classification accuracy. Extensions of the core pipeline are presented including both geometric- and accuracy-based representational similarity analysis, implemented in Python. Common choices of implementation are presented and discussed. As the amount of artifact-free EEG data contributed by each participant is lower in studies of infants than in studies of children and adults, we also explore and discuss the impact of varying participant-level inclusion thresholds on resulting MVPA findings in these datasets.


2021 ◽  
Vol 15 ◽  
Author(s):  
Karl M. Kuntzelman ◽  
Jacob M. Williams ◽  
Phui Cheng Lim ◽  
Ashok Samal ◽  
Prahalada K. Rao ◽  
...  

In recent years, multivariate pattern analysis (MVPA) has been hugely beneficial for cognitive neuroscience by making new experiment designs possible and by increasing the inferential power of functional magnetic resonance imaging (fMRI), electroencephalography (EEG), and other neuroimaging methodologies. In a similar time frame, “deep learning” (a term for the use of artificial neural networks with convolutional, recurrent, or similarly sophisticated architectures) has produced a parallel revolution in the field of machine learning and has been employed across a wide variety of applications. Traditional MVPA also uses a form of machine learning, but most commonly with much simpler techniques based on linear calculations; a number of studies have applied deep learning techniques to neuroimaging data, but we believe that those have barely scratched the surface of the potential deep learning holds for the field. In this paper, we provide a brief introduction to deep learning for those new to the technique, explore the logistical pros and cons of using deep learning to analyze neuroimaging data – which we term “deep MVPA,” or dMVPA – and introduce a new software toolbox (the “Deep Learning In Neuroimaging: Exploration, Analysis, Tools, and Education” package, DeLINEATE for short) intended to facilitate dMVPA for neuroscientists (and indeed, scientists more broadly) everywhere.


2021 ◽  
Vol 15 ◽  
Author(s):  
Junjie Bu ◽  
Chang Liu ◽  
Huixing Gou ◽  
Hefan Gan ◽  
Yan Cheng ◽  
...  

Compared with the traditional neurofeedback paradigm, the cognition-guided neurofeedback brain–computer interface (BCI) is a novel paradigm with significant effect on nicotine addiction. However, the cognition-guided neurofeedback BCI dataset is extremely lacking at present. This paper provides a BCI dataset based on a novel cognition-guided neurofeedback on nicotine addiction. Twenty-eight participants are recruited and involved in two visits of neurofeedback training. This cognition-guided neurofeedback includes two phases: an offline classifier construction and a real-time neurofeedback training. The original electroencephalogram (EEG) raw data of two phases are provided and evaluated in this paper. The event-related potential (ERP) amplitude and channel waveform suggest that our BCI dataset is of good quality and consistency. During neurofeedback training, the participants’ smoking cue reactivity patterns have a significant reduction. The mean accuracy of the multivariate pattern analysis (MVPA) classifier can reach approximately 70%. This novel cognition-guided neurofeedback BCI dataset can be used to develop comparisons with other neurofeedback systems and provide a reference for the development of other BCI algorithms and neurofeedback paradigms on addiction.


2017 ◽  
Author(s):  
J. Brendan Ritchie ◽  
David Michael Kaplan ◽  
Colin Klein

AbstractSince its introduction, multivariate pattern analysis (MVPA), or “neural decoding”, has transformed the field of cognitive neuroscience. Underlying its influence is a crucial inference, which we call the Decoder’s Dictum: if information can be decoded from patterns of neural activity, then this provides strong evidence about what information those patterns represent. Although the Dictum is a widely held and well-motivated principle in decoding research, it has received scant philosophical attention. We critically evaluate the Dictum, arguing that it is false: decodability is a poor guide for revealing the content of neural representations. However, we also suggest how the Dictum can be improved on, in order to better justify inferences about neural representation using MVPA.


2019 ◽  
Author(s):  
Zhiai Li ◽  
Hongbo Yu ◽  
Yongdi Zhou ◽  
Tobias Kalenscher ◽  
Xiaolin Zhou

AbstractPeople do not only feel guilty for transgressions of social norms/expectations that they are causally responsible for, but they also feel guilty for transgressions committed by those they identify as in-group (i.e., collective or group-based guilt). However, the neurocognitive basis of group-based guilt and its relation to personal guilt are unknown. To address these questions, we combined functional MRI with an interaction-based minimal group paradigm in which participants either directly caused harm to victims (i.e., personal guilt), or observed in-group members cause harm to the victims (i.e., group-based guilt). In three experiments (N = 90), we demonstrated that perceived shared responsibility with in-group members in the transgression predicted behavioral and neural manifestations of group-based guilt. Multivariate pattern analysis of the functional MRI data showed that group-based guilt recruited a similar brain representation in anterior middle cingulate cortex as personal guilt. These results have broaden our understanding of how group membership is integrated into social emotions.


Sign in / Sign up

Export Citation Format

Share Document