scholarly journals Profiling and structural analysis of cardenolides in two species of Digitalis using liquid chromatography coupled with high-resolution mass spectrometry

2019 ◽  
Author(s):  
Baradwaj Gopal Ravi ◽  
Mary Grace E. Guardian ◽  
Rebecca Dickman ◽  
Zhen Q. Wang

AbstractPlants of the Digitalis genus contain a cocktail of cardenolides commonly prescribed to treat heart failure. Cardenolides in Digitalis extracts have been conventionally quantified by high-performance liquid chromatography yet the lack of structural information compounded with possible co-eluents renders this method insufficient for analyzing cardenolides in plants. The goal of this work is to structurally characterize cardiac glycosides in fresh-leaf extracts using liquid chromatography coupled with tandem mass spectrometry (LC/MS/MS) that provides exact masses. Fragmentation of cardenolides is featured by sequential loss of sugar units while the steroid aglycon moieties undergo stepwise elimination of hydroxyl groups, which distinguishes different aglycones. The sequence of elution follows diginatigenin→digoxigenin→gitoxigenin→gitaloxigenin→digitoxigenin for cardenolides with the same sugar units but different aglycones using a reverse-phase column. A linear range of 0.8-500 ng g−1 has been achieved for digoxigenin, β-acetyldigoxin, and digitoxigenin with limits of detection ranging from 0.09 to 0.45 ng g−1. A total of 17 cardenolides have been detected with lanatoside A, C, and E as major cardenolides in Digitalis lanata while 7 have been found in Digitalis purpurea including purpurea glycoside A, B, and E. Surprisingly, glucodigifucoside in D. lanata and verodoxin and digitoxigenin fucoside in D. purpurea have also been found as major cardenolides. As the first MS/MS-based method developed for analyzing cardenolides in plant extracts, this method serves as a foundation for complete identification and accurate quantification of cardiac glycosides, a necessary step towards understanding the biosynthesis of cardenolide in plants.

Molecules ◽  
2021 ◽  
Vol 26 (4) ◽  
pp. 960
Author(s):  
Haibo Hu ◽  
Yau Lee-Fong ◽  
Jinnian Peng ◽  
Bin Hu ◽  
Jialin Li ◽  
...  

The roots of Fissistigma oldhamii (FO) are widely used as medicine with the effect of dispelling wind and dampness, promoting blood circulation and relieving pains, and its fruits are considered delicious. However, Hakka people always utilize its above-ground parts as a famous folk medicine, Xiangteng, with significant differences from literatures. Studies of chemical composition showed there were multiple aristolactams that possessed high nephrotoxicity, pending evaluation research about their distribution in FO. In this study, a sensitive, selective, rapid and reliable method was established to comparatively perform qualitative and semi-quantitative analysis of the constituents in roots, stems, leaves, fruits and insect galls, using an Ultra-High-Performance Liquid Chromatography coupled with Hybrid Quadrupole Orbitrap Mass Spectrometry (UPLC-Q-Exactive Orbitrap MS, or Q-Exactive for short). To make more accurate identification and comparison of FO chemicals, all MS data were aligned and screened by XCMS, then their structures were elucidated according to MSn ion fragments between the detected and standards, published ones or these generated by MS fragmenter. A total of 79 compounds were identified, including 33 alkaloids, 29 flavonoids, 11 phenylpropanoids, etc. There were 54 common components in all five parts, while another 25 components were just detected in some parts. Six toxic aristolactams were detected in this experiment, including aristolactam AII, AIIIa, BII, BIII, FI and FII, of which the relative contents in above-ground stems were much higher than roots. Meanwhile, multivariate statistical analysis was performed and showed significant differences both in type and content of the ingredients within all FO parts. The results implied that above-ground FO parts should be carefully valued for oral administration and eating fruits. This study demonstrated that the high-resolution mass spectrometry coupled with multivariate statistical methods was a powerful tool in compound analysis of complicated herbal extracts, and the results provide the basis for its further application, scientific development of quality standard and utilization.


Sign in / Sign up

Export Citation Format

Share Document