sequential loss
Recently Published Documents


TOTAL DOCUMENTS

45
(FIVE YEARS 7)

H-INDEX

16
(FIVE YEARS 0)

2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Martin James ◽  
Dominik Anton Suchla ◽  
Jörn Dunkel ◽  
Michael Wilczek

AbstractMelting of two-dimensional (2D) equilibrium crystals is a complex phenomenon characterized by the sequential loss of positional and orientational order. In contrast to passive systems, active crystals can self-assemble and melt into an active fluid by virtue of their intrinsic motility and inherent non-equilibrium stresses. Currently, the non-equilibrium physics of active crystallization and melting processes is not well understood. Here, we establish the emergence and investigate the melting of self-organized vortex crystals in 2D active fluids using a generalized Toner-Tu theory. Performing extensive hydrodynamic simulations, we find rich transition scenarios. On small domains, we identify a hysteretic transition as well as a transition featuring temporal coexistence of active vortex lattices and active turbulence, both of which can be controlled by self-propulsion and active stresses. On large domains, an active vortex crystal with solid order forms within the parameter range corresponding to active vortex lattices. The melting of this crystal proceeds through an intermediate hexatic phase. Generally, these results highlight the differences and similarities between crystalline phases in active fluids and their equilibrium counterparts.


Author(s):  
Carlos J. Martos-Rodríguez ◽  
Julián Albarrán-Juárez ◽  
Daniel Morales-Cano ◽  
Ainoa Caballero ◽  
Donal MacGrogan ◽  
...  

Objective: Atheromatous fibrous caps are produced by smooth muscle cells (SMCs) that are recruited to the subendothelial space. We tested whether the recruitment mechanisms are the same as in embryonic artery development, which relies prominently on Notch signaling to form the subendothelial medial SMC layers. Approach and Results: Notch elements were expressed in regions of fibrous cap in human and mouse plaques. To assess the causal role of Notch signaling in cap formation, we studied atherosclerosis in mice where the Notch pathway was inactivated in SMCs by conditional knockout of the essential effector transcription factor RBPJ. The recruitment of cap SMCs was significantly reduced without major effects on plaque size. Lineage tracing revealed the accumulation of SMC-derived plaque cells in the cap region was unaltered but that Notch-defective cells failed to re-acquire the SMC phenotype in the cap. Conversely, to analyze whether the loss of Notch signaling is required for SMC-derived cells to accumulate in atherogenesis, we studied atherosclerosis in mice with constitutive activation of Notch signaling in SMCs achieved by conditional expression of the Notch intracellular domain. Forced Notch signaling inhibited the ability of medial SMCs to contribute to plaque cells, including both cap SMCs and osteochondrogenic cells, and significantly reduced atherosclerosis development. Conclusions: Sequential loss and gain of Notch signaling is needed to build the cap SMC population. The shared mechanisms with embryonic arterial media assembly suggest that the cap forms as a neo-media that restores the connection between endothelium and subendothelial SMCs, transiently disrupted in early atherogenesis.


Molecules ◽  
2021 ◽  
Vol 26 (12) ◽  
pp. 3495
Author(s):  
Ana Lourenço ◽  
António Velez Marques ◽  
Jorge Gominho

Eight polyhydroxy triterpenoid acids, hederagenin, (4α)-23-hydroxybetulinic acid, maslinic acid, corosolic acid, arjunolic acid, asiatic acid, caulophyllogenin, and madecassic acid, with 2, 3, and 4 hydroxyl substituents, were identified and quantified in the dichloromethane extract of Eucalyptus globulus wood by comparing their GC-retention time and mass spectra with standards. Two other triterpenoid acids were tentatively identified by analyzing their mass spectra, as (2α)-2-hydroxybetulinic acid and (2α,4α)-2,23-dihydroxybetulinic acid, with 2 and 3 hydroxyl substituents. Two MS detectors were used, a quadrupole ion trap (QIT) and a quadrupole mass filter (QMF). The EI fragmentation pattern of the trimethylsilylated polyhydroxy structures of these triterpenoid acids is characterized by the sequential loss of the trimethylsilylated hydroxyl groups, most of them by the retro-Diels-Alder (rDA) opening of the C ring with a π-bond at C12-C13. The rDA C-ring opening produces ions at m/z 320 (or 318) and m/z 278 (or 277, 276, 366). Sequential losses of the hydroxyl groups produce ions with m/z from [M - 90] to [M - 90*y], where y is the number of hydroxyl substituents present (from 2 to 4). Moreover, specific cleavage in ring E was observed, passing from m/z 203 to m/z 133 and conducting other major fragments such as m/z 189.


Author(s):  
Arjun Kafle ◽  
Peter Armentrout

Collision-induced dissociation (CID) of [Th,2C,2O]+ with Xe is performed using a guided ion beam tandem mass spectrometer (GIBMS). The only products observed are ThCO+ and Th+ by sequential loss of...


2020 ◽  
Vol 22 (30) ◽  
pp. 17275-17290
Author(s):  
Kuntal Chatterjee ◽  
Otto Dopfer

The structure of the predominant fragments of the fundamental pyrimidine cation arising from sequential loss of HCN are identified by infrared spectroscopy of tagged ions and dispersion-corrected density functional theory calculations.


2019 ◽  
Author(s):  
Baradwaj Gopal Ravi ◽  
Mary Grace E. Guardian ◽  
Rebecca Dickman ◽  
Zhen Q. Wang

AbstractPlants of the Digitalis genus contain a cocktail of cardenolides commonly prescribed to treat heart failure. Cardenolides in Digitalis extracts have been conventionally quantified by high-performance liquid chromatography yet the lack of structural information compounded with possible co-eluents renders this method insufficient for analyzing cardenolides in plants. The goal of this work is to structurally characterize cardiac glycosides in fresh-leaf extracts using liquid chromatography coupled with tandem mass spectrometry (LC/MS/MS) that provides exact masses. Fragmentation of cardenolides is featured by sequential loss of sugar units while the steroid aglycon moieties undergo stepwise elimination of hydroxyl groups, which distinguishes different aglycones. The sequence of elution follows diginatigenin→digoxigenin→gitoxigenin→gitaloxigenin→digitoxigenin for cardenolides with the same sugar units but different aglycones using a reverse-phase column. A linear range of 0.8-500 ng g−1 has been achieved for digoxigenin, β-acetyldigoxin, and digitoxigenin with limits of detection ranging from 0.09 to 0.45 ng g−1. A total of 17 cardenolides have been detected with lanatoside A, C, and E as major cardenolides in Digitalis lanata while 7 have been found in Digitalis purpurea including purpurea glycoside A, B, and E. Surprisingly, glucodigifucoside in D. lanata and verodoxin and digitoxigenin fucoside in D. purpurea have also been found as major cardenolides. As the first MS/MS-based method developed for analyzing cardenolides in plant extracts, this method serves as a foundation for complete identification and accurate quantification of cardiac glycosides, a necessary step towards understanding the biosynthesis of cardenolide in plants.


Toxins ◽  
2019 ◽  
Vol 11 (9) ◽  
pp. 483
Author(s):  
Andrea Scirè ◽  
Fabio Tanfani ◽  
Alessio Ausili

Gelonin from the Indian plant Gelonium multiflorum belongs to the type I ribosome-inactivating proteins (RIPs). Like other members of RIPs, this toxin glycoprotein inhibits protein synthesis of eukaryotic cells; hence, it is largely used in the construction of immunotoxins composed of cell-targeted antibodies. Lysosomal degradation is one of the main issues in targeted tumor therapies, especially for type I RIP-based toxins, as they lack the translocation domains. The result is an attenuated cytosolic delivery and a decrease of the antitumor efficacy of these plant-derived toxins; therefore, strategies to permit their release from endosomal vesicles or modifications of the toxins to make them resistant to degradation are necessary to improve their efficacy. Using infrared spectroscopy, we thoroughly analyzed both the secondary structure and the thermal unfolding of gelonin. Moreover, by the combination of two-dimensional correlation spectroscopy and phase diagram method, it was possible to deduce the sequence of events during the unfolding, confirming the typical characteristic of the RIP members to denature in two steps, as a sequential loss of tertiary and secondary structure was detected at 58 °C and at 65 °C, respectively. Additionally, some discrepancies in the unfolding process between gelonin and saporin-S6, another type I RIP protein, were detected.


2018 ◽  
Vol 50 (A) ◽  
pp. 13-29
Author(s):  
Guillaume Achaz ◽  
Amaury Lambert ◽  
Emmanuel Schertzer

Abstract In this paper we give a new flavour to what Peter Jagers and his co-authors call `the path to extinction'. In a neutral population of constant size N, assume that each individual at time 0 carries a distinct type, or allele. Consider the joint dynamics of these N alleles, for example the dynamics of their respective frequencies and more plainly the nonincreasing process counting the number of alleles remaining by time t. Call this process the extinction process. We show that in the Moran model, the extinction process is distributed as the process counting (in backward time) the number of common ancestors to the whole population, also known as the block counting process of the N-Kingman coalescent. Stimulated by this result, we investigate whether it extends (i) to an identity between the frequencies of blocks in the Kingman coalescent and the frequencies of alleles in the extinction process, both evaluated at jump times, and (ii) to the general case of Λ-Fleming‒Viot processes.


Haematologica ◽  
2018 ◽  
Vol 103 (5) ◽  
pp. e215-e218 ◽  
Author(s):  
Haneen Shalabi ◽  
Ira L. Kraft ◽  
Hao-Wei Wang ◽  
Constance M. Yuan ◽  
Bonnie Yates ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document