scholarly journals Effects of Recombination Rate and Gene Density on Transposable Element Distributions in Arabidopsis thaliana

2003 ◽  
Vol 13 (8) ◽  
pp. 1897-1903 ◽  
Author(s):  
Stephen I. Wright ◽  
Newton Agrawal ◽  
Thomas E. Bureau

Transposable elements (TEs) comprise a major component of eukaryotic genomes, and exhibit striking deviations from random distribution across the genomes studied, including humans, flies, nematodes, and plants. Although considerable progress has been made in documenting these patterns, the causes are subject to debate. Here, we use the genome sequence of Arabidopsis thaliana to test for the importance of competing models of natural selection against TE insertions. We show that, despite TE accumulation near the centromeres, recombination does not generally correlate with TE abundance, suggesting that selection against ectopic recombination does not influence TE distribution in A. thaliana. In contrast, a consistent negative correlation between gene density and TE abundance, and a strong under-representation of TE insertions in introns suggest that selection against TE disruption of gene expression is playing a more important role in A. thaliana. High rates of self-fertilization may reduce the importance of recombination rate in genome structuring in inbreeding organisms such as A. thaliana and Caenorhabditis elegans.

Genetics ◽  
2002 ◽  
Vol 160 (2) ◽  
pp. 595-608 ◽  
Author(s):  
Jody Hey ◽  
Richard M Kliman

AbstractIn Drosophila, as in many organisms, natural selection leads to high levels of codon bias in genes that are highly expressed. Thus codon bias is an indicator of the intensity of one kind of selection that is experienced by genes and can be used to assess the impact of other genomic factors on natural selection. Among 13,000 genes in the Drosophila genome, codon bias has a slight positive, and strongly significant, association with recombination—as expected if recombination allows natural selection to act more efficiently when multiple linked sites segregate functional variation. The same reasoning leads to the expectation that the efficiency of selection, and thus average codon bias, should decline with gene density. However, this prediction is not confirmed. Levels of codon bias and gene expression are highest for those genes in an intermediate range of gene density, a pattern that may be the result of a tradeoff between the advantages for gene expression of close gene spacing and disadvantages arising from regulatory conflicts among tightly packed genes. These factors appear to overlay the more subtle effect of linkage among selected sites that gives rise to the association between recombination rate and codon bias.


2019 ◽  
Author(s):  
Kyria Roessler ◽  
Aline Muyle ◽  
Concepcion M. Diez ◽  
Garren R.J. Gaut ◽  
Alexandros Bousios ◽  
...  

ABSTRACTIn plants, self-fertilization is both an important reproductive strategy and a valuable genetic tool. In theory, selfing increases homozygosity at a rate of 0.50 per generation. Increased homozygosity can uncover recessive deleterious variants and lead to inbreeding depression, unless it is countered by the loss of these variants by genetic purging. Here we investigated the dynamics of purging on genomic scale by testing three predictions. The first was that heterozygous, putatively deleterious SNPs were preferentially lost from the genome during continued selfing. The second was that the loss of deleterious SNPs varied as a function of recombination rate, because recombination increases the efficacy of selection by uncoupling linked variants. Finally, we predicted that genome size (GS) decreases during selfing, due to the purging of deleterious transposable element (TE) insertions. We tested these three predictions by following GS and SNP variants in a series of selfed maize (Zea mays ssp. mays) lines over six generations. In these lines, putatively deleterious alleles were purged, and purging was more pronounced in highly recombining regions. Homozygosity increased more slowly than expected; instead of increasing by 50% each generation, it increased by 35% to 40%. Finally, three lines showed dramatic decreases in GS, losing an average of 398 Mb from their genomes over the short timeframe of our experiment. TEs were the principal component of loss, and GS loss was more likely for lineages that began with more TE and more chromosomal knob repeats. Overall, this study documented remarkable GS loss – as much DNA as three Arabidopsis thaliana genomes, on average - in only a few generations of selfing.


2021 ◽  
Vol 22 (1) ◽  
Author(s):  
Guiomar Martín ◽  
Yamile Márquez ◽  
Federica Mantica ◽  
Paula Duque ◽  
Manuel Irimia

Abstract Background Alternative splicing (AS) is a widespread regulatory mechanism in multicellular organisms. Numerous transcriptomic and single-gene studies in plants have investigated AS in response to specific conditions, especially environmental stress, unveiling substantial amounts of intron retention that modulate gene expression. However, a comprehensive study contrasting stress-response and tissue-specific AS patterns and directly comparing them with those of animal models is still missing. Results We generate a massive resource for Arabidopsis thaliana, PastDB, comprising AS and gene expression quantifications across tissues, development and environmental conditions, including abiotic and biotic stresses. Harmonized analysis of these datasets reveals that A. thaliana shows high levels of AS, similar to fruitflies, and that, compared to animals, disproportionately uses AS for stress responses. We identify core sets of genes regulated specifically by either AS or transcription upon stresses or among tissues, a regulatory specialization that is tightly mirrored by the genomic features of these genes. Unexpectedly, non-intron retention events, including exon skipping, are overrepresented across regulated AS sets in A. thaliana, being also largely involved in modulating gene expression through NMD and uORF inclusion. Conclusions Non-intron retention events have likely been functionally underrated in plants. AS constitutes a distinct regulatory layer controlling gene expression upon internal and external stimuli whose target genes and master regulators are hardwired at the genomic level to specifically undergo post-transcriptional regulation. Given the higher relevance of AS in the response to different stresses when compared to animals, this molecular hardwiring is likely required for a proper environmental response in A. thaliana.


2014 ◽  
Vol 171 (6) ◽  
pp. 382-388 ◽  
Author(s):  
Hiroaki Kato ◽  
Tamao Saito ◽  
Hidetaka Ito ◽  
Yoshibumi Komeda ◽  
Atsushi Kato

2012 ◽  
Vol 2 (4) ◽  
pp. 505-513 ◽  
Author(s):  
Marisa Miller ◽  
Changqing Zhang ◽  
Z. Jeffrey Chen

Sign in / Sign up

Export Citation Format

Share Document