scholarly journals Time-Lapse Imaging of Postimplantation Mouse Embryos

2011 ◽  
Vol 2011 (4) ◽  
pp. pdb.prot5595-pdb.prot5595 ◽  
Author(s):  
M. D. Garcia ◽  
R. S. Udan ◽  
A.-K. Hadjantonakis ◽  
M. E. Dickinson
2015 ◽  
Vol 9 (2) ◽  
pp. 022407 ◽  
Author(s):  
Yu-Hsiang Chung ◽  
Yi-Hsing Hsiao ◽  
Wei-Lun Kao ◽  
Chia-Hsien Hsu ◽  
Da-Jeng Yao ◽  
...  

eLife ◽  
2019 ◽  
Vol 8 ◽  
Author(s):  
Kimberly Box ◽  
Bradley W Joyce ◽  
Danelle Devenport

The control of cell fate through oriented cell division is imperative for proper organ development. Basal epidermal progenitor cells divide parallel or perpendicular to the basement membrane to self-renew or produce differentiated stratified layers, but the mechanisms regulating the choice between division orientations are unknown. Using time-lapse imaging to follow divisions and fates of basal progenitors, we find that mouse embryos defective for the planar cell polarity (PCP) gene, Vangl2, exhibit increased perpendicular divisions and hyperthickened epidermis. Surprisingly, this is not due to defective Vangl2 function in the epidermis, but to changes in cell geometry and packing that arise from the open neural tube characteristic of PCP mutants. Through regional variations in epidermal deformation and physical manipulations, we show that local tissue architecture, rather than cortical PCP cues, regulates the decision between symmetric and stratifying divisions, allowing flexibility for basal cells to adapt to the needs of the developing tissue.


Acta Naturae ◽  
2016 ◽  
Vol 8 (3) ◽  
pp. 88-96
Author(s):  
Yu. K. Doronin ◽  
I. V. Senechkin ◽  
L. V. Hilkevich ◽  
M. A. Kurcer

In order to estimate the diversity of embryo cleavage relatives to embryo progress (blastocyst formation), time-lapse imaging data of preimplantation human embryo development were used. This retrospective study is focused on the topographic features and time parameters of the cleavages, with particular emphasis on the lengths of cleavage cycles and the genealogy of blastomeres in 2- to 8-cell human embryos. We have found that all 4-cell human embryos have four developmental variants that are based on the sequence of appearance and orientation of cleavage planes during embryo cleavage from 2 to 4 blastomeres. Each variant of cleavage shows a strong correlation with further developmental dynamics of the embryos (different cleavage cycle characteristics as well as lengths of blastomere cycles). An analysis of the sequence of human blastomere divisions allowed us to postulate that the effects of zygotic determinants are eliminated as a result of cleavage, and that, thereafter, blastomeres acquire the ability of own syntheses, regulation, polarization, formation of functional contacts, and, finally, of specific differentiation. This data on the early development of human embryos obtained using noninvasive methods complements and extend our understanding of the embryogenesis of eutherian mammals and may be applied in the practice of reproductive technologies.


2019 ◽  
Vol 1 ◽  
pp. 204-210 ◽  
Author(s):  
Alyson Wilson ◽  
Stanley Serafin ◽  
Dilan Seckiner ◽  
Rachel Berry ◽  
Xanthé Mallett

2021 ◽  
Vol 109 ◽  
pp. 103363
Author(s):  
Ben Roche ◽  
Jonathan M. Bull ◽  
Hector Marin-Moreno ◽  
Timothy G. Leighton ◽  
Ismael H. Falcon-Suarez ◽  
...  

2016 ◽  
Vol 10 (1) ◽  
pp. 174-184 ◽  
Author(s):  
Sajith Kecheril Sadanandan ◽  
Ozden Baltekin ◽  
Klas E. G. Magnusson ◽  
Alexis Boucharin ◽  
Petter Ranefall ◽  
...  

2017 ◽  
Vol 36 (5) ◽  
pp. 519-528 ◽  
Author(s):  
Tomoyo Tanaka ◽  
Mitsuhiro Hoshijima ◽  
Junko Sunaga ◽  
Takashi Nishida ◽  
Mana Hashimoto ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document