scholarly journals Implementation of a gauge-invariant time-dependent configuration-interaction-singles method for three-dimensional atoms

2019 ◽  
Vol 100 (4) ◽  
Author(s):  
Takuma Teramura ◽  
Takeshi Sato ◽  
Kenichi L. Ishikawa
2018 ◽  
Vol 8 (3) ◽  
pp. 433 ◽  
Author(s):  
Takeshi Sato ◽  
Takuma Teramura ◽  
Kenichi Ishikawa

2016 ◽  
Vol 94 (12) ◽  
pp. 989-997 ◽  
Author(s):  
Qing Liao ◽  
Wen Li ◽  
H. Bernhard Schlegel

The angle dependence of strong field ionization has been studied for a set of molecules containing triple bonds: HCCH, HCN, HCC–CN, H2N–CCH, H2N–CN, and H2N–CC–CN. Time-dependent configuration interaction (TDCI) with a complex absorbing potential was used to model strong field ionization by a linearly polarized seven-cycle 800 nm cosine squared pulse. The ionization yields have been calculated as a function of the laser intensity and polarization direction and plotted as three-dimensional surfaces. At low field strengths, the angular dependence can be understood in terms of ionization from the highest occupied orbitals. At higher laser intensities, ionization occurs from lower lying orbitals as well as from the highest occupied orbitals, as indicated by changes in the angular dependence of the ionization yield and by variations in the population analysis of the TDCI wavefunction with the intensity of the laser field. The ionization yield for directions parallel to the molecular axis increases more rapidly than perpendicular to the axis as the conjugation length is increased. NH2 substitution substantially increases the ionization yield along the molecular axis but has only a small effect for perpendicular directions.


1991 ◽  
Vol 06 (39) ◽  
pp. 3591-3600 ◽  
Author(s):  
HIROSI OOGURI ◽  
NAOKI SASAKURA

It is shown that, in the three-dimensional lattice gravity defined by Ponzano and Regge, the space of physical states is isomorphic to the space of gauge-invariant functions on the moduli space of flat SU(2) connections over a two-dimensional surface, which gives physical states in the ISO(3) Chern–Simons gauge theory. To prove this, we employ the q-analogue of this model defined by Turaev and Viro as a regularization to sum over states. A recent work by Turaev suggests that the q-analogue model itself may be related to an Euclidean gravity with a cosmological constant proportional to 1/k2, where q=e2πi/(k+2).


Mathematics ◽  
2021 ◽  
Vol 9 (7) ◽  
pp. 756
Author(s):  
Federico Lluesma-Rodríguez ◽  
Francisco Álcantara-Ávila ◽  
María Jezabel Pérez-Quiles ◽  
Sergio Hoyas

One numerical method was designed to solve the time-dependent, three-dimensional, incompressible Navier–Stokes equations in turbulent thermal channel flows. Its originality lies in the use of several well-known methods to discretize the problem and its parallel nature. Vorticy-Laplacian of velocity formulation has been used, so pressure has been removed from the system. Heat is modeled as a passive scalar. Any other quantity modeled as passive scalar can be very easily studied, including several of them at the same time. These methods have been successfully used for extensive direct numerical simulations of passive thermal flow for several boundary conditions.


Sign in / Sign up

Export Citation Format

Share Document