scholarly journals Readout of quasiperiodic systems using qubits

2021 ◽  
Vol 103 (2) ◽  
Author(s):  
Madhumita Saha ◽  
Bijay Kumar Agarwalla ◽  
B. Prasanna Venkatesh
Author(s):  
Ted Janssen ◽  
Gervais Chapuis ◽  
Marc de Boissieu

The law of rational indices to describe crystal faces was one of the most fundamental law of crystallography and is strongly linked to the three-dimensional periodicity of solids. This chapter describes how this fundamental law has to be revised and generalized in order to include the structures of aperiodic crystals. The generalization consists in using for each face a number of integers, with the number corresponding to the rank of the structure, that is, the number of integer indices necessary to characterize each of the diffracted intensities generated by the aperiodic system. A series of examples including incommensurate multiferroics, icosahedral crystals, and decagonal quaiscrystals illustrates this topic. Aperiodicity is also encountered in surfaces where the same generalization can be applied. The chapter discusses aperiodic crystal morphology, including icosahedral quasicrystal morphology, decagonal quasicrystal morphology, and aperiodic crystal surfaces; magnetic quasiperiodic systems; aperiodic photonic crystals; mesoscopic quasicrystals, and the mineral calaverite.


1989 ◽  
Vol 39 (1) ◽  
pp. 475-487 ◽  
Author(s):  
T. Odagaki ◽  
Hideaki Aoyama

2014 ◽  
Vol 2014 ◽  
pp. 1-35 ◽  
Author(s):  
Enrique Maciá

The interest in the precise nature of critical states and their role in the physics of aperiodic systems has witnessed a renewed interest in the last few years. In this work we present a review on the notion of critical wave functions and, in the light of the obtained results, we suggest the convenience of some conceptual revisions in order to properly describe the relationship between the transport properties and the wave functions distribution amplitudes for eigen functions belonging to singular continuous spectra related to both fractal and quasiperiodic distribution of atoms through the space.


2018 ◽  
Vol 115 (18) ◽  
pp. 4595-4600 ◽  
Author(s):  
Marko Žnidarič ◽  
Marko Ljubotina

Integrable models form pillars of theoretical physics because they allow for full analytical understanding. Despite being rare, many realistic systems can be described by models that are close to integrable. Therefore, an important question is how small perturbations influence the behavior of solvable models. This is particularly true for many-body interacting quantum systems where no general theorems about their stability are known. Here, we show that no such theorem can exist by providing an explicit example of a one-dimensional many-body system in a quasiperiodic potential whose transport properties discontinuously change from localization to diffusion upon switching on interaction. This demonstrates an inherent instability of a possible many-body localization in a quasiperiodic potential at small interactions. We also show how the transport properties can be strongly modified by engineering potential at only a few lattice sites.


2010 ◽  
Vol 374 (48) ◽  
pp. 4804-4807 ◽  
Author(s):  
W.J. Hsueh ◽  
C.H. Chen ◽  
C.H. Chang

Sign in / Sign up

Export Citation Format

Share Document