Reduced sensitivity to disorder in a coupled-resonator waveguide with disordered coupling coefficients

2021 ◽  
Vol 103 (2) ◽  
Author(s):  
Rujiang Li ◽  
Yakir Hadad
2021 ◽  
Vol 103 (3) ◽  
Author(s):  
Shu-Ting Guo ◽  
Yu-Hong Zhang ◽  
Liu-Le Wu ◽  
Ming-Yong Ye ◽  
Xiu-Min Lin

Author(s):  
Marc-Antoine Bianki ◽  
Cedric Lemieux-Leduc ◽  
Regis Guertin ◽  
Yves-Alain Peter

Author(s):  
J. F. Cass ◽  
S. J. Hogan

AbstractThe widely cited Haken–Kelso–Bunz (HKB) model of motor coordination is used in an enormous range of applications. In this paper, we show analytically that the weakly damped, weakly coupled HKB model of two oscillators depends on only two dimensionless parameters; the ratio of the linear damping coefficient and the linear coupling coefficient and the ratio of the combined nonlinear damping coefficients and the combined nonlinear coupling coefficients. We illustrate our results with a mechanical analogue. We use our analytic results to predict behaviours in arbitrary parameter regimes and show how this led us to explain and extend recent numerical continuation results of the full HKB model. The key finding is that the HKB model contains a significant amount of behaviour in biologically relevant parameter regimes not yet observed in experiments or numerical simulations. This observation has implications for the development of virtual partner interaction and the human dynamic clamp, and potentially for the HKB model itself.


2019 ◽  
Vol 69 (11-12) ◽  
pp. 1387-1399 ◽  
Author(s):  
Huan-Huan Chen ◽  
Yiquan Qi ◽  
Yuntao Wang ◽  
Fei Chai

Abstract Fourteen years (September 2002 to August 2016) of high-resolution satellite observations of sea surface temperature (SST) data are used to describe the frontal pattern and frontogenesis on the southeastern continental shelf of Brazil. The daily SST fronts are obtained using an edge-detection algorithm, and the monthly frontal probability (FP) is subsequently calculated. High SST FPs are mainly distributed along the coast and decrease with distance from the coastline. The results from empirical orthogonal function (EOF) decompositions reveal strong seasonal variability of the coastal SST FP with maximum (minimum) in the astral summer (winter). Wind plays an important role in driving the frontal activities, and high FPs are accompanied by strong alongshore wind stress and wind stress curl. This is particularly true during the summer, when the total transport induced by the alongshore component of upwelling-favorable winds and the wind stress curl reaches the annual maximum. The fronts are influenced by multiple factors other than wind forcing, such as the orientation of the coastline, the seafloor topography, and the meandering of the Brazil Current. As a result, there is a slight difference between the seasonality of the SST fronts and the wind, and their relationship was varying with spatial locations. The impact of the air-sea interaction is further investigated in the frontal zone, and large coupling coefficients are found between the crosswind (downwind) SST gradients and the wind stress curl (divergence). The analysis of the SST fronts and wind leads to a better understanding of the dynamics and frontogenesis off the southeastern continental shelf of Brazil, and the results can be used to further understand the air-sea coupling process at regional level.


2002 ◽  
Vol 748 ◽  
Author(s):  
C. L. Zhao ◽  
Z. H. Wang ◽  
W. Zhu ◽  
O. K. Tan ◽  
H. H. Hng

ABSTRACTLead zirconate titanate (PZT) films are promising for acoustic micro-devices applications because of their extremely high electromechanical coupling coefficients and excellent piezoelectric response. Thicker PZT films are crucial for these acoustic applications. A hybrid sol-gel technology has been developed as a new approach to realize simple and cost-effective fabrication of high quality PZT thick films. In this paper, PZT53/47 thick films with a thickness of 5–50 μm are successfully deposited on Pt-coated silicon wafer by using the hybrid sol-gel technology. The obtained PZT thick films are dense, crack-free, and have a nano-sized microstructure. The processing parameters of this technology have been evaluated. The microstructure of the film has been observed using field-emission scanning electron microscopy and the crystallization process has been monitored by the X-ray diffraction. The thick films thus made are good candidates for fabrication of piezoelectric diaphragm which will be an essential element of microspeaker and microphone arrays.


Sign in / Sign up

Export Citation Format

Share Document