scholarly journals Visualizing coherent vibrational motion in the molecular iodine B3Π0+u state using ultrafast XUV transient-absorption spectroscopy

2021 ◽  
Vol 104 (2) ◽  
Author(s):  
Sonia M. Poullain ◽  
Yuki Kobayashi ◽  
Kristina F. Chang ◽  
Stephen R. Leone
2021 ◽  
Author(s):  
Ying Liu ◽  
Jianmin Lu ◽  
Qianxiao Zhang ◽  
Yajie Bai ◽  
Xuliang Pang ◽  
...  

Decoration of Ag-ultrathin Ni-MOF onside Cu2O was firstly fabricated. The charge-transfer dynamics at heterostructure was in-depth revealed by ultrafast transient absorption spectroscopy. NH3 yield rate (4.63 μg h-1 cm-2) with...


2021 ◽  
Vol 3 (1) ◽  
Author(s):  
Giovanni Cistaro ◽  
Luis Plaja ◽  
Fernando Martín ◽  
Antonio Picón

Author(s):  
Junjie Chen ◽  
Sen Guo ◽  
Dabin Lin ◽  
Zhaogang Nie ◽  
Chung-Che Huang ◽  
...  

Femtosecond transient absorption spectroscopy has been employed to unravel separate initial nonequilibrium dynamic process of photo-injected electrons and holes during the formation process of the lowest excitons at the K-valley...


Author(s):  
Romain Geneaux ◽  
Hugo J. B. Marroux ◽  
Alexander Guggenmos ◽  
Daniel M. Neumark ◽  
Stephen R. Leone

Attosecond science opened the door to observing nuclear and electronic dynamics in real time and has begun to expand beyond its traditional grounds. Among several spectroscopic techniques, X-ray transient absorption spectroscopy has become key in understanding matter on ultrafast time scales. In this review, we illustrate the capabilities of this unique tool through a number of iconic experiments. We outline how coherent broadband X-ray radiation, emitted in high-harmonic generation, can be used to follow dynamics in increasingly complex systems. Experiments performed in both molecules and solids are discussed at length, on time scales ranging from attoseconds to picoseconds, and in perturbative or strong-field excitation regimes. This article is part of the theme issue ‘Measurement of ultrafast electronic and structural dynamics with X-rays’.


2019 ◽  
Vol 9 (7) ◽  
pp. 1350
Author(s):  
Daria Kolbasova ◽  
Robin Santra

A theoretical description of attosecond transient absorption spectroscopy for temporally and spatially overlapping XUV and optical pulses is developed, explaining the signals one can obtain in such an experiment. To this end, we employ a two-stage approach based on perturbation theory, which allows us to give an analytical expression for the transient absorption signal. We focus on the situation in which the attosecond XUV pulse is used to create a coherent superposition of electronic states. As we explain, the resulting dynamics can be detected in the spectrum of the transmitted XUV pulse by manipulating the electronic wave packet using a carrier-envelope-phase-stabilized optical dressing pulse. In addition to coherent electron dynamics triggered by the attosecond pulse, the transmitted XUV spectrum encodes information on electronic states made accessible by the optical dressing pulse. We illustrate these concepts through calculations performed for a few-level model.


Sign in / Sign up

Export Citation Format

Share Document