scholarly journals Quantum control of atomic systems by homodyne detection and feedback

1998 ◽  
Vol 57 (6) ◽  
pp. 4877-4888 ◽  
Author(s):  
Holger F. Hofmann ◽  
Günter Mahler ◽  
Ortwin Hess
Author(s):  
Philipp Treutlein

This chapter gives an introduction to optomechanics with ultracold atoms. The opening half deals with optomechanical atom–light interactions. Section 9.2 introduces atom trapping. Section 9.3 discusses the properties of trapped atoms as mechanical oscillators. Section 9.4 describes optomechanical interactions, treating the atoms as polarizable particles, a model used in section 9.5 to derive optomechanical coupling of atoms and a cavity field and briefly review cavity optomechanics experiments with atoms in the quantum regime. The second half deals with hybrid mechanical-atomic systems. We start with an overview of different coupling mechanisms, then focus on light-mediated interactions and derive the coupling of a membrane to an ensemble of laser-cooled atoms. Section 9.8 reviews experiments on sympathetic cooling of a membrane with cold atoms, with perspectives for mechanical quantum control discussed in section 9.9. Section 9.10 introduces the possibilities that arise if the mechanical oscillator is coupled to the atomic internal state.


2020 ◽  
Vol 10 (1) ◽  
Author(s):  
R. Gutiérrez-Jáuregui ◽  
R. Jáuregui

Abstract Each natural mode of the electromagnetic field within a parabolic mirror exhibits spatial localization and polarization properties that can be exploited for the quantum control of its interaction with atomic systems. The region of localization is not restricted to the focus of the mirror leading to a selective response of atomic systems trapped on its vicinity. We report calculations of the spontaneous emission rates for an atom trapped inside the mirror accounting for all atomic polarizations and diverse trapping regions. It is shown that electric dipole transitions can be enhanced near the focus of a deep parabolic mirror with a clear identification of the few vectorial modes involved. Out of the focus the enhancement vanishes gradually, but the number of relevant modes remains small. Ultimately this represents a quantum electrodynamic system where internal and external degrees of freedom cooperate to maximize a selective exchange and detection of single excitations.


Author(s):  
D. Charalambidis ◽  
N. E. Karapanagioti ◽  
D. Xenakis ◽  
E. Papastathopoulos ◽  
C. Fotakis ◽  
...  

1999 ◽  
Vol 10 (07) ◽  
pp. 1205-1228 ◽  
Author(s):  
E. V. KRISHNAMURTHY

The important requirements are stated for the success of quantum computation. These requirements involve coherent preserving Hamiltonians as well as exact integrability of the corresponding Feynman path integrals. Also we explain the role of metric entropy in dynamical evolutionary system and outline some of the open problems in the design of quantum computational systems. Finally, we observe that unless we understand quantum nondemolition measurements, quantum integrability, quantum chaos and the direction of time arrow, the quantum control and computational paradigms will remain elusive and the design of systems based on quantum dynamical evolution may not be feasible.


Sign in / Sign up

Export Citation Format

Share Document