scholarly journals Hybrid classical-quantum dynamics

2001 ◽  
Vol 63 (2) ◽  
Author(s):  
Asher Peres ◽  
Daniel R. Terno
2011 ◽  
Vol 18 (04) ◽  
pp. 339-351 ◽  
Author(s):  
Dariusz Chruściński ◽  
Andrzej Kossakowski ◽  
Giuseppe Marmo ◽  
E. C. G. Sudarshan

We analyze the dynamics of coupled classical and quantum systems. The main idea is to treat both systems as true quantum ones and impose a family of superselection rules which imply that the corresponding algebra of observables of one subsystem is commutative and hence may be treated as a classical one. Equivalently, one may impose a special symmetry which restricts the algebra of observables to the 'classical' subalgebra. The characteristic feature of classical-quantum dynamics is that it leaves invariant a subspace of classical-quantum states, that is, it does not create quantum correlations as measured by the quantum discord.


2022 ◽  
Vol 6 (POPL) ◽  
pp. 1-31
Author(s):  
Xiaodong Jia ◽  
Andre Kornell ◽  
Bert Lindenhovius ◽  
Michael Mislove ◽  
Vladimir Zamdzhiev

We consider a programming language that can manipulate both classical and quantum information. Our language is type-safe and designed for variational quantum programming, which is a hybrid classical-quantum computational paradigm. The classical subsystem of the language is the Probabilistic FixPoint Calculus (PFPC), which is a lambda calculus with mixed-variance recursive types, term recursion and probabilistic choice. The quantum subsystem is a first-order linear type system that can manipulate quantum information. The two subsystems are related by mixed classical/quantum terms that specify how classical probabilistic effects are induced by quantum measurements, and conversely, how classical (probabilistic) programs can influence the quantum dynamics. We also describe a sound and computationally adequate denotational semantics for the language. Classical probabilistic effects are interpreted using a recently-described commutative probabilistic monad on DCPO. Quantum effects and resources are interpreted in a category of von Neumann algebras that we show is enriched over (continuous) domains. This strong sense of enrichment allows us to develop novel semantic methods that we use to interpret the relationship between the quantum and classical probabilistic effects. By doing so we provide a very detailed denotational analysis that relates domain-theoretic models of classical probabilistic programming to models of quantum programming.


2021 ◽  
Vol 81 (11) ◽  
Author(s):  
Reginald Christian Bernardo

AbstractWe study inflationary dynamics using a recently introduced classical-quantum correspondence for investigating the backreaction of a quantum mechanical degree of freedom to a classical background. Using specifically a coupled Einstein–Klein–Gordon system, an approximation that holds well during the very early inflationary era when modes are very deep inside the Hubble horizon, we show that the backreaction of a mode of the quantum field will renormalize the Hubble parameter only if the mode’s wavelength is longer than some threshold Planckian length scale. Otherwise, the mode will destabilize the inflationary era. We also present an approximate analytical solution that supports the existence of such short-wavelength threshold and compare the results of the classical-quantum correspondence with the traditional perturbative-iterative method in semiclassical gravity.


2009 ◽  
Vol 18 (14) ◽  
pp. 2159-2166
Author(s):  
C. S. UNNIKRISHNAN ◽  
G. T. GILLIES

Gravitational bending of light is a spectacular prediction of Einstein's general relativity, tested and observed in numerous situations. We examine the fine structure of gravitational bending in new light to obtain insights pertaining to some deep links between gravity and quantum mechanics. The new results include quantum-theoretical interpretation of part of the light bending, making a good case for gravity encompassing wave–particle duality, perhaps a new insight for quantum gravity itself. We reiterate the mutual compatibility of the equivalence principle and quantum dynamics in a simple proof. Finally, we address certain unresolved issues regarding the gravitational bending of ultraslow light and tunneling photons in the context of experiments that might pose fresh challenges for the interface of the two century-old theories.


2016 ◽  
Vol 12 (1) ◽  
pp. 4172-4177
Author(s):  
Abdul Malek

The denial of the existence of contradiction is at the root of all idealism in epistemology and the cause for alienations.  This alienation has become a hindrance for the understanding of the nature and the historical evolution mathematics itself and its role as an instrument in the enquiry of the physical universe (1). A dialectical materialist approach incorporating  the role of the contradiction of the unity of the opposites, chance and necessity etc., can provide a proper understanding of the historical evolution of mathematics and  may ameliorate  the negative effect of the alienation in modern theoretical physics and cosmology. The dialectical view also offers a more plausible materialist interpretation of the bewildering wave-particle duality in quantum dynamics (2).


Author(s):  
Walter Dittrich ◽  
Martin Reuter
Keyword(s):  

1995 ◽  
Author(s):  
J. Lobaugh ◽  
Gregory A. Voth
Keyword(s):  

2003 ◽  
Vol 68 (3) ◽  
pp. 529-553 ◽  
Author(s):  
Ivana Paidarová ◽  
Philippe Durand

The wave operator theory of quantum dynamics is reviewed and applied to the study of line profiles and to the determination of the dynamics of interacting resonances. Energy-dependent and energy-independent effective Hamiltonians are investigated. The q-reversal effect in spectroscopy is interpreted in terms of interfering Fano profiles. The dynamics of an hydrogen atom subjected to a strong static electric field is revisited.


Sign in / Sign up

Export Citation Format

Share Document