BEND IT LIKE EINSTEIN: GRAVITATIONAL DEFLECTION OF CLASSICAL, QUANTUM AND EXOTIC LIGHT

2009 ◽  
Vol 18 (14) ◽  
pp. 2159-2166
Author(s):  
C. S. UNNIKRISHNAN ◽  
G. T. GILLIES

Gravitational bending of light is a spectacular prediction of Einstein's general relativity, tested and observed in numerous situations. We examine the fine structure of gravitational bending in new light to obtain insights pertaining to some deep links between gravity and quantum mechanics. The new results include quantum-theoretical interpretation of part of the light bending, making a good case for gravity encompassing wave–particle duality, perhaps a new insight for quantum gravity itself. We reiterate the mutual compatibility of the equivalence principle and quantum dynamics in a simple proof. Finally, we address certain unresolved issues regarding the gravitational bending of ultraslow light and tunneling photons in the context of experiments that might pose fresh challenges for the interface of the two century-old theories.

2021 ◽  
Vol 34 (4) ◽  
pp. 464-469
Author(s):  
C. Y. Lo

Simulation shows that general relativity would lead to the existence of black holes if gravitation is always attractive. However, although we observed an invisible and extremely heavy object governs the orbits of stars at the center of our galaxy, we still cannot determine the existence of a black hole. Thus, one may ask whether black holes actually exist. Einstein’s general relativity has been established, because its prediction on the bending of light rays has been confirmed by observation. However, Einstein’s prediction on the increment of weight for a piece of metal as the temperature increases is proven incorrect by experiments, which actually show a reduction of weight. This leads to the necessary existence of repulsive gravitational force, which has been demonstrated by a charged capacitor hovering above the earth. Thus, Einstein, Newton, Galileo, and Maxwell all made the error of overlooking the repulsive gravitational charge-mass interaction. Thus, it is necessary to rejustify the existence of black holes, because gravity is not always attractive. Moreover, repulsive gravitational force makes it necessary to extend general relativity to a five-dimensional theory. Thus, to find out whether black holes exist, it is necessary to investigate the repulsive gravitation and a five-dimensional space.


Author(s):  
Laurent Baulieu ◽  
John Iliopoulos ◽  
Roland Sénéor

General relativity. The equivalence principle and the derivation of the Einstein–Hilbert equations. The geometrical notions of curvature and affine connection are introduced. Geodesics and the bending of light by a gravitational field. General relativity as a gauge invariant classical field theory.


2016 ◽  
Vol 13 (08) ◽  
pp. 1640007 ◽  
Author(s):  
Salvatore Capozziello ◽  
Mariafelicia De Laurentis

Fundamental issues underlying gravitational physics and some of the shortcomings of Einstein’s general relativity (GR) are discussed. In particular, after taking into account the role of the two main objects of relativistic theories of gravity, i.e. the metric and the connection fields, we consider the possibility that they are not trivially related so that the geodesic structure and the causal structure of the spacetime could be disentangled, as supposed in the Palatini formulation of gravity. In this perspective, the equivalence principle (EP), in its weak and strong formulations, can play a fundamental role in discriminating among competing theories. The possibility of its violation at quantum level could open new perspectives in gravitational physics and in unification with other interactions. We shortly debate the possibility of EP measurements by ground-based and space experiments.


2016 ◽  
Vol 25 (12) ◽  
pp. 1644019 ◽  
Author(s):  
M. M. Sheikh-Jabbari

General covariance is the cornerstone of Einstein’s general relativity (GR) and implies that any two metrics related by diffeomorphisms are physically equivalent. There are, however, many examples pointing to the fact that this strict statement of general covariance needs refinement. There are a very special (measure-zero) subset of diffeomorphisms, the residual diffeomorphisms, to which one can associate well-defined conserved charges. This would hence render these diffeomorphic geometries physically distinct. We discuss that these symmetries may be appropriately called “symplectic symmetries”. Existence of residual diffeomorphisms and symplectic symmetries can be a quite general feature and not limited to the examples discussed so far in the literature. We propose that, in the context of black holes, these diffeomorphic, but distinct, geometries may be viewed as “symplectic soft hair” on black holes. We comment on how this may remedy black hole microstate problem, which in this context are dubbed as “horizon fluffs”.


2016 ◽  
Vol 12 (1) ◽  
pp. 4172-4177
Author(s):  
Abdul Malek

The denial of the existence of contradiction is at the root of all idealism in epistemology and the cause for alienations.  This alienation has become a hindrance for the understanding of the nature and the historical evolution mathematics itself and its role as an instrument in the enquiry of the physical universe (1). A dialectical materialist approach incorporating  the role of the contradiction of the unity of the opposites, chance and necessity etc., can provide a proper understanding of the historical evolution of mathematics and  may ameliorate  the negative effect of the alienation in modern theoretical physics and cosmology. The dialectical view also offers a more plausible materialist interpretation of the bewildering wave-particle duality in quantum dynamics (2).


Author(s):  
Laurent Baulieu ◽  
John Iliopoulos ◽  
Roland Sénéor

A geometrical derivation of Abelian and non- Abelian gauge theories. The Faddeev–Popov quantisation. BRST invariance and ghost fields. General discussion of BRST symmetry. Application to Yang–Mills theories and general relativity. A brief history of gauge theories.


Author(s):  
David M. Wittman

The equivalence principle is an important thinking tool to bootstrap our thinking from the inertial coordinate systems of special relativity to the more complex coordinate systems that must be used in the presence of gravity (general relativity). The equivalence principle posits that at a given event gravity accelerates everything equally, so gravity is equivalent to an accelerating coordinate system.This conjecture is well supported by precise experiments, so we explore the consequences in depth: gravity curves the trajectory of light as it does other projectiles; the effects of gravity disappear in a freely falling laboratory; and gravitymakes time runmore slowly in the basement than in the attic—a gravitational form of time dilation. We show how this is observable via gravitational redshift. Subsequent chapters will build on this to show how the spacetime metric varies with location.


Author(s):  
Lawrence H. Starkey

For two centuries Kant's first Critique has nourished various turns against transcendent metaphysics and realism. Kant was scandalized by reason's impotence in confronting infinity (or finitude) as seen in the divisibility of particles and in spatial extension and time. Therefore, he had to regard the latter as subjective and reality as imponderable. In what follows, I review various efforts to rationalize Kant's antinomies-efforts that could only flounder before the rise of Einstein's general relativity and Hawking's blackhole cosmology. Both have undercut the entire Kantian tradition by spawning highly probable theories for suppressing infinities and actually resolving these perplexities on a purely physical basis by positing curvatures of space and even of time that make them reëntrant to themselves. Heavily documented from primary sources in physics, this paper displays time’s curvature as its slowing down near very massive bodies and even freezing in a black hole from which it can reëmerge on the far side, where a new universe can open up. I argue that space curves into a double Möbius strip until it loses one dimension in exchange for another in the twin universe. It shows how 10-dimensional GUTs and the triple Universe, time/charge/parity conservation, and strange and bottom particle families and antiparticle universes, all fit together.


2007 ◽  
Vol 3 (S248) ◽  
pp. 290-291 ◽  
Author(s):  
A. Vecchiato ◽  
M. G. Lattanzi ◽  
M. Gai ◽  
R. Morbidelli

AbstractGAME (Gamma Astrometric Measurement Experiment) is a concept for an experiment whose goal is to measure from space the γ parameter of the Parameterized Post-Newtonian formalism, by means of a satellite orbiting at 1 AU from the Sun and looking as close as possible to its limb. This technique resembles the one used during the solar eclipse of 1919, when Dyson, Eddington and collaborators measured for the first time the gravitational bending of light. Simple estimations suggest that, possibly within the budget of a small mission, one could reach the 10−6level of accuracy with ~106observations of relatively bright stars at about 2° apart from the Sun. Further simulations show that this result could be reached with only 20 days of measurements on stars ofV≤ 17 uniformly distributed. A quick look at real star densities suggests that this result could be greatly improved by observing particularly crowded regions near the galactic center.


Sign in / Sign up

Export Citation Format

Share Document