scholarly journals Higher-order time-symmetry-breaking phase transition due to meeting of an exceptional point and a Fano resonance

2016 ◽  
Vol 94 (2) ◽  
Author(s):  
Satoshi Tanaka ◽  
Savannah Garmon ◽  
Kazuki Kanki ◽  
Tomio Petrosky
Nanophotonics ◽  
2019 ◽  
Vol 8 (3) ◽  
pp. 495-504 ◽  
Author(s):  
Qiang Bai

AbstractWe theoretically and numerically demonstrate that the spontaneous parity-time (PT) symmetry breaking phase transition can be realized respectively by using two independent tuning ways in a tri-layered metamaterial that consists of periodic array of metal-semiconductor Schottky junctions. The existence conditions of PT symmetry and its phase transition are obtained by using a theoretical model based on the coupled mode theory. A hot-electron photodetection based on the same tri-layered metamaterial is proposed, which can directly show the spontaneous PT symmetry breaking phase transition in photocurrent and possesses dynamical tunability and switchability. This work extends the concept of PT symmetry into the hot-electron photodetection, enriches the functionality of the metamaterial and the hot-electron device, and has varieties of potential and important applications in optoelectronics, photodetection, photovoltaics, and photocatalytics.


Symmetry ◽  
2020 ◽  
Vol 12 (10) ◽  
pp. 1726
Author(s):  
Fuyuki Ito

We have used the fluorescence detection of phase transformation dynamics of organic compounds by photochemical methods to observe a real-time symmetry breaking process. The organic fluorescent molecules vary the fluorescence spectra depending on molecular aggregated states, implying fluorescence spectroscopy can be applied to probe the evolution of the molecular-assembling process. As an example, the amorphous-to-crystal phase transformation and crystallization with symmetry breaking at droplet during the solvent evaporation of mechanofluorochromic molecules are represented in this review.


2021 ◽  
Vol 4 (1) ◽  
Author(s):  
Shruti Dogra ◽  
Artem A. Melnikov ◽  
Gheorghe Sorin Paraoanu

Abstract The observation of genuine quantum effects in systems governed by non-Hermitian Hamiltonians has been an outstanding challenge in the field. Here we simulate the evolution under such Hamiltonians in the quantum regime on a superconducting quantum processor by using a dilation procedure involving an ancillary qubit. We observe the parity–time ($${\mathcal{PT}}$$ PT )-symmetry breaking phase transition at the exceptional points, obtain the critical exponent, and show that this transition is associated with a loss of state distinguishability. In a two-qubit setting, we show that the entanglement can be modified by local operations.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Arik Bergman ◽  
Robert Duggan ◽  
Kavita Sharma ◽  
Moshe Tur ◽  
Avi Zadok ◽  
...  

AbstractThe exotic physics emerging in non-Hermitian systems with balanced distributions of gain and loss has recently drawn a great deal of attention. These systems exhibit phase transitions and exceptional point singularities in their spectra, at which eigen-values and eigen-modes coalesce and the overall dimensionality is reduced. So far, these principles have been implemented at the expense of precise fabrication and tuning requirements, involving tailored nano-structured devices with controlled optical gain and loss. In this work, anti-parity-time symmetric phase transitions and exceptional point singularities are demonstrated in a single strand of single-mode telecommunication fibre, using a setup consisting of off-the-shelf components. Two propagating signals are amplified and coupled through stimulated Brillouin scattering, enabling exquisite control over the interaction-governing non-Hermitian parameters. Singular response to small-scale variations and topological features arising around the exceptional point are experimentally demonstrated with large precision, enabling robustly enhanced response to changes in Brillouin frequency shift.


2020 ◽  
Vol 2020 (5) ◽  
Author(s):  
J. Ambjørn ◽  
G. Czelusta ◽  
J. Gizbert-Studnicki ◽  
A. Görlich ◽  
J. Jurkiewicz ◽  
...  

2021 ◽  
Vol 7 (1) ◽  
Author(s):  
Tao Chen ◽  
Wei Gou ◽  
Dizhou Xie ◽  
Teng Xiao ◽  
Wei Yi ◽  
...  

AbstractWe experimentally study quantum Zeno effects in a parity-time (PT) symmetric cold atom gas periodically coupled to a reservoir. Based on the state-of-the-art control of inter-site couplings of atoms in a momentum lattice, we implement a synthetic two-level system with passive PT symmetry over two lattice sites, where an effective dissipation is introduced through repeated couplings to the rest of the lattice. Quantum Zeno (anti-Zeno) effects manifest in our experiment as the overall dissipation of the two-level system becoming suppressed (enhanced) with increasing coupling intensity or frequency. We demonstrate that quantum Zeno regimes exist in the broken PT symmetry phase, and are bounded by exceptional points separating the PT symmetric and PT broken phases, as well as by a discrete set of critical coupling frequencies. Our experiment establishes the connection between PT-symmetry-breaking transitions and quantum Zeno effects, and is extendable to higher dimensions or to interacting regimes, thanks to the flexible control with atoms in a momentum lattice.


1989 ◽  
Vol 58 (3) ◽  
pp. 898-904
Author(s):  
Ruibao Tao ◽  
Xiao Hu ◽  
Masuo Suzuki

Sign in / Sign up

Export Citation Format

Share Document