scholarly journals Relativistic motion of an Airy wave packet in a lattice potential

2018 ◽  
Vol 98 (6) ◽  
Author(s):  
C. E. Creffield
2019 ◽  
Vol 59 (3) ◽  
Author(s):  
Algirdas Matulis ◽  
Artûras Acus

The solution of the Liouville equation for the ensemble of free particles is presented and the classical analog to the quantum accelerating Airy wave packet is constructed and discussed. Considering the motion of various classical packets – with an infinite and restricted distribution of velocities of particles – and also the motion of their fronts, we demonstrate in the simplest and most definite way why the packet can display a more sophisticated behaviour (even acceleration) as compared with a free individual particle that moves at a fixed velocity. A comparison of this classical solution with the quantum one in the Wigner representation of quantum mechanics, which provides the closest analogy, is also presented.


2017 ◽  
Vol 70 (2) ◽  
pp. 119-121
Author(s):  
Mounira Berrehail ◽  
Nadjet Benchiheub

Author(s):  
Norman J. Morgenstern Horing

Chapter 13 addresses Bose condensation in superfluids (and superconductors), which involves the field operator ψ‎ having a c-number component (<ψ(x,t)>≠0), challenging number conservation. The nonlinear Gross-Pitaevskii equation is derived for this condensate wave function<ψ>=ψ−ψ˜, facilitating identification of the coherence length and the core region of vortex motion. The noncondensate Green’s function G˜1(1,1′)=−i<(ψ˜(1)ψ˜+(1′))+> and the nonvanishing anomalous correlation function F˜∗(2,1′)=−i<(ψ˜+(2)ψ˜+(1′))+> describe the dynamics and elementary excitations of the non-condensate states and are discussed in conjunction with Landau’s criterion for viscosity. Associated concepts of off-diagonal long-range order and the interpretation of <ψ> as a superfluid order parameter are also introduced. Anderson’s Bose-condensed state, as a phase-coherent wave packet superposition of number states, resolves issues of number conservation. Superconductivity involves bound Cooper pairs of electrons capable of Bose condensation and superfluid behavior. Correspondingly, the two-particle Green’s function has a term involving a product of anomalous bound-Cooper-pair condensate wave functions of the type F(1,2)=−i<(ψ(1)ψ(2))+>≠0, such that G2(1,2;1′,2′)=F(1,2)F+(1′,2′)+G˜2(1,2;1′,2′). Here, G˜2 describes the dynamics/excitations of the non-superfluid-condensate states, while nonvanishing F,F+ represent a phase-coherent wave packet superposition of Cooper-pair number states and off-diagonal long range order. Employing this form of G2 in the G1-equation couples the condensed state with the non-condensate excitations. Taken jointly with the dynamical equation for F(1,2), this leads to the Gorkov equations, encompassing the Bardeen–Cooper–Schrieffer (BCS) energy gap, critical temperature, and Bogoliubov-de Gennes eigenfunction Bogoliubons. Superconductor thermodynamics and critical magnetic field are discussed. For a weak magnetic field, the Gorkov-equations lead to Ginzburg–Landau theory and a nonlinear Schrödinger-like equation for the pair wave function and the associated supercurrent, along with identification of the Cooper pair density. Furthermore, Chapter 13 addresses the apparent lack of gauge invariance of London theory with an elegant variational analysis involving re-gauging the potentials, yielding a manifestly gauge invariant generalization of the London equation. Consistency with the equation of continuity implies the existence of Anderson’s acoustic normal mode, which is supplanted by the plasmon for Coulomb interaction. Type II superconductors and the penetration (and interaction) of quantized magnetic flux lines are also discussed. Finally, Chapter 13 addresses Josephson tunneling between superconductors.


1995 ◽  
Vol 52 (4) ◽  
pp. 2402-2411 ◽  
Author(s):  
C. R. Hu ◽  
S. G. Matinyan ◽  
B. Müller ◽  
A. Trayanov ◽  
T. M. Gould ◽  
...  

1998 ◽  
Vol 13 (05) ◽  
pp. 347-351 ◽  
Author(s):  
MURAT ÖZER

We attempt to treat the very early Universe according to quantum mechanics. Identifying the scale factor of the Universe with the width of the wave packet associated with it, we show that there cannot be an initial singularity and that the Universe expands. Invoking the correspondence principle, we obtain the scale factor of the Universe and demonstrate that the causality problem of the standard model is solved.


1989 ◽  
Vol 91 (12) ◽  
pp. 7693-7704 ◽  
Author(s):  
Andreas Bringer ◽  
John Harris

2021 ◽  
Vol 9 ◽  
Author(s):  
Fabien Quéré ◽  
Henri Vincenti

Abstract The quantum vacuum plays a central role in physics. Quantum electrodynamics (QED) predicts that the properties of the fermionic quantum vacuum can be probed by extremely large electromagnetic fields. The typical field amplitudes required correspond to the onset of the ‘optical breakdown’ of this vacuum, expected at light intensities >4.7×1029 W/cm2. Approaching this ‘Schwinger limit’ would enable testing of major but still unverified predictions of QED. Yet, the Schwinger limit is seven orders of magnitude above the present record in light intensity achieved by high-power lasers. To close this considerable gap, a promising paradigm consists of reflecting these laser beams off a mirror in relativistic motion, to induce a Doppler effect that compresses the light pulse in time down to the attosecond range and converts it to shorter wavelengths, which can then be focused much more tightly than the initial laser light. However, this faces a major experimental hurdle: how to generate such relativistic mirrors? In this article, we explain how this challenge could nowadays be tackled by using so-called ‘relativistic plasma mirrors’. We argue that approaching the Schwinger limit in the coming years by applying this scheme to the latest generation of petawatt-class lasers is a challenging but realistic objective.


Sign in / Sign up

Export Citation Format

Share Document