scholarly journals Analysis and design of parallel-coupled high-gradient structure for ultrashort input power pulses

Author(s):  
Yuliang Jiang ◽  
Jiaru Shi ◽  
Hao Zha ◽  
Jiayang Liu ◽  
Xiancai Lin ◽  
...  
2011 ◽  
Vol 130-134 ◽  
pp. 529-533
Author(s):  
Jian Qin Deng ◽  
Wan Shun Jiang ◽  
Yue Min Ning

A novel spatial multilayer doubler is proposed in the paper. It is designed by tray approach in rectangular waveguide. The doubler consists of multilayer multiplier circuits, which are parallel each other. Comparing with traditional single layer doubler, the spatial multilayer doubler has higher 1dB compression point, so the output power can be increased when input power is increased. Both the input port and the output port of the doubler are rectangular waveguides. In order to achieve the transition from rectangular waveguide to planar circuit, the finline and ridge are used. Multilayer finlines act as divider, which couple power from input rectangular waveguide. Otherwise, multilayer ridges act as combiner, which combine the harmonic power to output rectangular waveguider. The passive circuits of the spatial multilayer doubler are modeled and analyzed with FDTD method. From the results, we can see that the passive circuits designed in the paper have very low insertion loss.


2012 ◽  
Vol 2012 ◽  
pp. 1-11 ◽  
Author(s):  
Ehsan Adabi ◽  
Ali M. Niknejad

Transformer-based shunt single pole, double-throw (SPDT) switches are analyzed, and design equations are provided. A mm-wave transformer-based SPDT shunt switch prototype was designed and fabricated in 90 nm digital CMOS process. It has a minimum insertion loss of 3.4 dB at 50 GHz from the single pole to the ON-thru port and a leakage of 19 dB from the single pole to the OFF-thru port. The isolation is 13.7 dB between the two thru ports. Large signal measurements verify that the switch is capable of handling +14 dBm of input power at its 1 dB compression point. The fabricated SPDT switch has a minute active area size of 60 μm×60 μm.


Sign in / Sign up

Export Citation Format

Share Document