scholarly journals ac Sensing Using Nitrogen-Vacancy Centers in a Diamond Anvil Cell up to 6 GPa

2021 ◽  
Vol 16 (5) ◽  
Author(s):  
Z. Wang ◽  
C. McPherson ◽  
R. Kadado ◽  
N. Brandt ◽  
S. Edwards ◽  
...  
2020 ◽  
Vol 37 (1) ◽  
pp. 019901
Author(s):  
Yan-Xing Shang ◽  
Fang Hong ◽  
Jian-Hong Dai ◽  
Hui Yu ◽  
Ya-Nan Lu ◽  
...  

2019 ◽  
Vol 36 (8) ◽  
pp. 086201 ◽  
Author(s):  
Yan-Xing Shang ◽  
Fang Hong ◽  
Jian-Hong Dai ◽  
Hui-Yu ◽  
Ya-Nan Lu ◽  
...  

2021 ◽  
Vol 92 (4) ◽  
pp. 044904
Author(s):  
Shao-Chun Zhang ◽  
Yang Dong ◽  
Bo Du ◽  
Hao-Bin Lin ◽  
Shen Li ◽  
...  

2021 ◽  
Vol 103 (6) ◽  
Author(s):  
A. S. J. Méndez ◽  
F. Trybel ◽  
R. J. Husband ◽  
G. Steinle-Neumann ◽  
H.-P. Liermann ◽  
...  

1989 ◽  
Vol 1 (5-6) ◽  
pp. 337-340 ◽  
Author(s):  
M. I. Eremets ◽  
V. V. Struzhkin ◽  
I. A. Trojan

2019 ◽  
Vol 116 (39) ◽  
pp. 19324-19329 ◽  
Author(s):  
Rajkrishna Dutta ◽  
Eran Greenberg ◽  
Vitali B. Prakapenka ◽  
Thomas S. Duffy

Neighborite, NaMgF3, is used as a model system for understanding phase transitions in ABX3 systems (e.g., MgSiO3) at high pressures. Here we report diamond anvil cell experiments that identify the following phases in NaMgF3 with compression to 162 GPa: NaMgF3 (perovskite) → NaMgF3 (post-perovskite) → NaMgF3 (Sb2S3-type) → NaF (B2-type) + NaMg2F5 (P21/c) → NaF (B2) + MgF2 (cotunnite-type). Our results demonstrate the existence of an Sb2S3-type post-post-perovskite ABX3 phase. We also experimentally demonstrate the formation of the P21/c AB2X5 phase which has been proposed theoretically to be a common high-pressure phase in ABX3 systems. Our study provides an experimental observation of the full sequence of phase transitions from perovskite to post-perovskite to post-post-perovskite followed by 2-stage breakdown to binary compounds. Notably, a similar sequence of transitions is predicted to occur in MgSiO3 at ultrahigh pressures, where it has implications for the mineralogy and dynamics in the deep interior of large, rocky extrasolar planets.


Micromachines ◽  
2021 ◽  
Vol 12 (6) ◽  
pp. 651
Author(s):  
Maxime Perdriat ◽  
Clément Pellet-Mary ◽  
Paul Huillery ◽  
Loïc Rondin ◽  
Gabriel Hétet

Controlling the motion of macroscopic oscillators in the quantum regime has been the subject of intense research in recent decades. In this direction, opto-mechanical systems, where the motion of micro-objects is strongly coupled with laser light radiation pressure, have had tremendous success. In particular, the motion of levitating objects can be manipulated at the quantum level thanks to their very high isolation from the environment under ultra-low vacuum conditions. To enter the quantum regime, schemes using single long-lived atomic spins, such as the electronic spin of nitrogen-vacancy (NV) centers in diamond, coupled with levitating mechanical oscillators have been proposed. At the single spin level, they offer the formidable prospect of transferring the spins’ inherent quantum nature to the oscillators, with foreseeable far-reaching implications in quantum sensing and tests of quantum mechanics. Adding the spin degrees of freedom to the experimentalists’ toolbox would enable access to a very rich playground at the crossroads between condensed matter and atomic physics. We review recent experimental work in the field of spin-mechanics that employ the interaction between trapped particles and electronic spins in the solid state and discuss the challenges ahead. Our focus is on the theoretical background close to the current experiments, as well as on the experimental limits, that, once overcome, will enable these systems to unleash their full potential.


2020 ◽  
Author(s):  
Kenji Ohta ◽  
Kei Hirose

Abstract Precise determinations of the thermal conductivity of iron alloys at high pressures and temperatures are essential for understanding the thermal history and dynamics of the metallic cores of the Earth. We review relevant high-pressure experiments using a diamond-anvil cell and discuss implications of high core conductivity for its thermal and compositional evolution.


Sign in / Sign up

Export Citation Format

Share Document