scholarly journals Softening of the Euler Buckling Criterion under Discretization of Compliance

2021 ◽  
Vol 16 (4) ◽  
Author(s):  
D.J. Carter ◽  
D.J. Dunstan ◽  
W. Just ◽  
O.F. Bandtlow ◽  
A. San-Miguel
Keyword(s):  
1997 ◽  
Vol 7 (3) ◽  
pp. 281-314 ◽  
Author(s):  
G. Domokos
Keyword(s):  

2021 ◽  
Vol 50 (1) ◽  
Author(s):  
Atia AFROZ ◽  
Toshizumi FUKUI
Keyword(s):  

1993 ◽  
Vol 115 (4) ◽  
pp. 219-222
Author(s):  
S. J. Cox

We examine submerged nonlinear tubular columns with slenderness ratios between 40 and 160 and ratios of diameter to thickness between 20 and 50. We demonstrate that the column’s Euler buckling load can be increased nearly 30 percent by a volume preserving taper of only a few degrees. We determine the effect of hydrostatic pressure and self-weight on such conical columns and offer some preliminary remarks on the role played by model imperfections.


2018 ◽  
Vol 191 ◽  
pp. 00008
Author(s):  
Ikram Feddal ◽  
Abdellatif Khamlichi ◽  
Koutaiba Ameziane

The use of composite stiffened panels is common in several activities such as aerospace, marine and civil engineering. The biggest advantage of the composite materials is their high specific strength and stiffness ratios, coupled with weight reduction compared to conventional materials. However, any structural system may reach its limit and buckle under extreme circumstances by a progressive local failure of components. Moreover, stiffened panels are usually assembled from elementary parts. This affects the geometric as well as the material properties resulting in a considerable sensitivity to buckling phenomenon. In this work, the buckling behavior of a composite stiffened panel made from carbon Epoxy Prepregs is studied by using the finite element analysis under Abaqus software package. Different plies orientations sets were considered. The initial distributed geometric imperfections were modeled by means of the first Euler buckling mode. The nonlinear Riks method of analysis provided by Abaqus was applied. This method enables to predict more consistently unstable geometrically nonlinear induced collapse of a structure by detecting potential limit points during the loading history. It was found that plies orientations of the composite and the presence of geometric imperfections have huge influence on the strength resistance.


2018 ◽  
Vol 10 (02) ◽  
pp. 1850013 ◽  
Author(s):  
Jianying Hu ◽  
Yu Zhou ◽  
Zishun Liu

When soft cellular structures are compressed axially beyond critical limits, elastic instabilities induce buckling behavior. Although the nonlinear response of periodic materials with different shape voids has been widely investigated, the effect of the friction on the structural response has not yet been explored. In this paper, we develop a simple theoretical model for the buckling of holey column with holes. Meanwhile, we also numerically and experimentally explore the effect of friction on the buckling behavior of the cellular structures. We find out that friction could prevent conventional, global Euler buckling for holey column, which tends to choose the pattern switching mode, and our study also provides future perspectives for mechanics of buckling or optimal design for the cellular structures.


1959 ◽  
Vol 10 (2) ◽  
pp. 145-148 ◽  
Author(s):  
E. H. Mansfield

SummaryThis paper is concerned with the buckling under uniform longitudinal compression of a variety of structures composed of plates whose thickness tapers linearly to zero across the section. Such structures include the angle of Fig. 1, the strut of cruciform section of Fig. 2 and the simply-supported strip of Fig. 3. For given cross-sectional area and overall dimensions (e.g. length of arm) the sections with linearly varying thickness achieve a greater buckling load (assuming that local buckling, rather than Euler buckling, is the criterion) than sections with any other smooth variation of thickness. These particular sections are therefore optimum sections and, even if they may not be used in practice, provide a convenient yardstick for purposes of comparison. The buckling loads are considerably greater than those for the corresponding “constant thickness” sections.


2006 ◽  
Vol 8 (10) ◽  
pp. 223-223 ◽  
Author(s):  
W E Lawrence ◽  
M N Wybourne ◽  
S M Carr

Author(s):  
D. Padilla-Llano ◽  
M. Eatherton ◽  
C. D. Moen ◽  
T. Bruce ◽  
L. MacAnallen

2004 ◽  
Vol 72 (6) ◽  
pp. 818-825 ◽  
Author(s):  
G. A. Kardomateas

There exist many formulas for the critical compression of sandwich plates, each based on a specific set of assumptions and a specific plate or beam model. It is not easy to determine the accuracy and range of validity of these rather simple formulas unless an elasticity solution exists. In this paper, we present an elasticity solution to the problem of buckling of sandwich beams or wide sandwich panels subjected to axially compressive loading (along the short side). The emphasis on this study is on the wrinkling (multi-wave) mode. The sandwich section is symmetric and all constituent phases, i.e., the facings and the core, are assumed to be orthotropic. First, the pre-buckling elasticity solution for the compressed sandwich structure is derived. Subsequently, the buckling problem is formulated as an eigen-boundary-value problem for differential equations, with the axial load being the eigenvalue. For a given configuration, two cases, namely symmetric and anti-symmetric buckling, are considered separately, and the one that dominates is accordingly determined. The complication in the sandwich construction arises due to the existence of additional “internal” conditions at the face sheet∕core interfaces. Results are produced first for isotropic phases (for which the simple formulas in the literature hold) and for different ratios of face-sheet vs core modulus and face-sheet vs core thickness. The results are compared with the different wrinkling formulas in the literature, as well as with the Euler buckling load and the Euler buckling load with transverse shear correction. Subsequently, results are produced for one or both phases being orthotropic, namely a typical sandwich made of glass∕polyester or graphite∕epoxy faces and polymeric foam or glass∕phenolic honeycomb core. The solution presented herein provides a means of accurately assessing the limitations of simplifying analyses in predicting wrinkling and global buckling in wide sandwich panels∕beams.


Sign in / Sign up

Export Citation Format

Share Document