scholarly journals Electronic energy gap closure and metal-insulator transition in dense liquid hydrogen

2020 ◽  
Vol 102 (19) ◽  
Author(s):  
Vitaly Gorelov ◽  
David M. Ceperley ◽  
Markus Holzmann ◽  
Carlo Pierleoni
1975 ◽  
Vol 53 (17) ◽  
pp. 1593-1605 ◽  
Author(s):  
T. Tiedje ◽  
J. F. Carolan ◽  
A. J. Berlinsky ◽  
L. Weiler

The magnetoresistance of TTF-TCNQ has been measured for currents along the crystallographic b axis in static fields of 50 kOe for temperatures between 17 and 98 K. For [Formula: see text] the magnetoresistance Δρ/ρ = [ρ(50 kOe) − ρ(0)]/ρ(0) is less than 0.1% in magnitude. There is a peak of about −1.4% at 52.8 ± 0.2 K. Below 50 K, Δρ/ρ is small and negative and is described reasonably well by the formula Δρ/ρ = −(1/2)(μBH/kT)2. At all temperatures Δρ/ρ was found to be approximately independent of the orientation of the applied field with respect to the current. The high temperature behavior is consistent with that expected for a metal in the short scattering time limit [Formula: see text]. We attribute the peak at 52.8 K to the suppression of the metal–insulator transition by the magnetic field, and we show why such behavior would be expected for a Peierls transition. In the low temperature region the crystal acts like a small gap semiconductor for which the –T−2 dependence of Δρ/ρ is easily understood. We note that the peak in the magnetoresistance at 52.8 K strongly suggests that the electronic energy gap goes to zero at this temperature. One is then led to conclude that the decrease in the conductivity between 58 and 53 K is due to resistive fluctuations above the metal–insulator transition.


Author(s):  
NANDINI TRIVEDI ◽  
YEN LEE LOH ◽  
KARIM BOUADIM ◽  
MOHIT RANDERIA

It is well known that the metal-insulator transition in two dimensions for non-interacting fermions takes place at infinitesimal disorder. In contrast, the superconductor-to-insulator transition takes place at a finite critical disorder (on the order of Vc ~ 2t), where V is the typical width of the distribution of random site energies and t is the hopping scale. In this article we compare the localization/delocalization properties of one and two particles. Whereas the metal-insulator transition is a consequence of single-particle Anderson localization, the superconductor-insulator transition (SIT) is due to pair localization – or, alternatively, fluctuations of the phase conjugate to pair density. The central question we address is how superconductivity emerges from localized single-particle states. We address this question using inhomogeneous mean field theory and quantum Monte Carlo techniques and make several testable predictions for local spectroscopic probes across the SIT. We show that with increasing disorder, the system forms superconducting blobs on the scale of the coherence length embedded in an insulating matrix. In the superconducting state, the phases on the different blobs are coherent across the system whereas in the insulator long-range phase coherence is disrupted by quantum fluctuations. As a consequence of this emergent granularity, we show that the single-particle energy gap in the density of states survives across the transition, but coherence peaks exist only in the superconductor. A characteristic pseudogap persists above the critical disorder and critical temperature, in contrast to conventional theories. Surprisingly, the insulator has a two-particle gap scale that vanishes at the SIT despite a robust single-particle gap.


2004 ◽  
Vol 114 ◽  
pp. 277-281 ◽  
Author(s):  
J. Wosnitza ◽  
J. Hagel ◽  
O. Stockert ◽  
C. Pfleiderer ◽  
J. A. Schlueter ◽  
...  

2018 ◽  
Vol 2 (8) ◽  
Author(s):  
Yoshiko Nanao ◽  
Yoshiharu Krockenberger ◽  
Ai Ikeda ◽  
Yoshitaka Taniyasu ◽  
Michio Naito ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document