scholarly journals Strongly coupled phonon fluid and Goldstone modes in an anharmonic quantum solid: Transport and chaos

2021 ◽  
Vol 104 (19) ◽  
Author(s):  
Evyatar Tulipman ◽  
Erez Berg
2000 ◽  
Vol 10 (PR5) ◽  
pp. Pr5-271-Pr5-274
Author(s):  
H. Totsuji ◽  
K. Tsuruta ◽  
C. Totsuji ◽  
K. Nakano ◽  
T. Kishimoto ◽  
...  

2019 ◽  
Author(s):  
Christopher John ◽  
Greg M. Swain ◽  
Robert P. Hausinger ◽  
Denis A. Proshlyakov

2-Oxoglutarate (2OG)-dependent dioxygenases catalyze C-H activation while performing a wide range of chemical transformations. In contrast to their heme analogues, non-heme iron centers afford greater structural flexibility with important implications for their diverse catalytic mechanisms. We characterize an <i>in situ</i> structural model of the putative transient ferric intermediate of 2OG:taurine dioxygenase (TauD) by using a combination of spectroelectrochemical and semi-empirical computational methods, demonstrating that the Fe (III/II) transition involves a substantial, fully reversible, redox-linked conformational change at the active site. This rearrangement alters the apparent redox potential of the active site between -127 mV for reduction of the ferric state and 171 mV for oxidation of the ferrous state of the 2OG-Fe-TauD complex. Structural perturbations exhibit limited sensitivity to mediator concentrations and potential pulse duration. Similar changes were observed in the Fe-TauD and taurine-2OG-Fe-TauD complexes, thus attributing the reorganization to the protein moiety rather than the cosubstrates. Redox difference infrared spectra indicate a reorganization of the protein backbone in addition to the involvement of carboxylate and histidine ligands. Quantitative modeling of the transient redox response using two alternative reaction schemes across a variety of experimental conditions strongly supports the proposal for intrinsic protein reorganization as the origin of the experimental observations.


1996 ◽  
Vol 33 (9) ◽  
pp. 9-16 ◽  
Author(s):  
John A. Swaffield ◽  
John A. McDougall

The transient flow conditions within a building drainage system may be simulated by the numerical solution of the defining equations of momentum and continuity, coupled to a knowledge of the boundary conditions representing either appliances discharging to the network or particular network terminations. While the fundamental mathematics has long been available, it is the availability of fast, affordable and accessible computing that has allowed the development of the simulations presented in this paper. A drainage system model for unsteady partially filled pipeflow will be presented in this paper. The model is capable of predicting flow depth and rate, and solid velocity, throughout a complex network. The ability of such models to assist in the decision making and design processes will be shown, particularly in such areas as appliance design and water conservation.


2020 ◽  
Vol 175 ◽  
pp. 12002 ◽  
Author(s):  
Issam Boukhanef ◽  
Anna Khadzhidi ◽  
Lyudmila Kravchenko ◽  
Zeroual Ayoub ◽  
Kastali Abdennour

In Algeria, the problems of erosion and sediment transport are critical, since they have the most dramatic consequences of the degradation of agricultural soils on the one hand and the siltation of the dam on the other .The sediment transport in the Algerian basins is very important especially during the periods of floods, It is in this sense that this study, which consists of estimating the sediment transport in suspension and determining the models of relation linking the liquid discharge and the sediment discharge in order to estimate the solid transport in the absence of suspended sediments concentration data at the Sidi Akkacha station at the outlet of the basin of Oued Allala which is subject to a high water erosion, it degrades from one year to the other under the effect of this phenomenon especially during the floods which drain high amounts of fine particles exceeding in general, the concentration of 150 g/l, the results obtained from the application of the models are very encouraging since the correlation between liquid and solid discharge exceeds 80 %.


Sign in / Sign up

Export Citation Format

Share Document