Three-body-force shell-model study of phonon dispersion in the transition-metal carbides TaC and HfC

1975 ◽  
Vol 12 (4) ◽  
pp. 1314-1318 ◽  
Author(s):  
M. P. Verma ◽  
B. R. K. Gupta
1989 ◽  
Vol 03 (02) ◽  
pp. 115-118 ◽  
Author(s):  
S. MOHAN

The phonon dispersion curve for the transition metal oxide viz. manganese oxide at room temperature has been calculated for the first time, assuming Mn ++ and O −− ions are highly polarisable. The three body force shell model employed here takes care of the effect of many body interactions in the lattice potential. The aim of this paper is to treat the various interactions between the ions in a more general way without making them numerically equal. The values of the phonon frequencies evaluated by the new approach are in general, in good agreement with the experimental values.


1989 ◽  
Vol 03 (10) ◽  
pp. 771-776 ◽  
Author(s):  
S. MOHAN ◽  
T. RADJAKOUMAR

A modified three-body force shell model is applied to evaluate the phonon dispersion values of MgO. The many-body interaction in the lattice potential is well accounted for by this theory. The values of the phonon frequencies evaluated by this method are in good confirmation with the neutron spectroscopic data.


2018 ◽  
Author(s):  
Marti Lopez ◽  
Luke Broderick ◽  
John J Carey ◽  
Francesc Vines ◽  
Michael Nolan ◽  
...  

<div>CO2 is one of the main actors in the greenhouse effect and its removal from the atmosphere is becoming an urgent need. Thus, CO2 capture and storage (CCS) and CO2 capture and usage (CCU) technologies are intensively investigated as technologies to decrease the concentration</div><div>of atmospheric CO2. Both CCS and CCU require appropriate materials to adsorb/release and adsorb/activate CO2, respectively. Recently, it has been theoretically and experimentally shown that transition metal carbides (TMC) are able to capture, store, and activate CO2. To further improve the adsorption capacity of these materials, a deep understanding of the atomic level processes involved is essential. In the present work, we theoretically investigate the possible effects of surface metal doping of these TMCs by taking TiC as a textbook case and Cr, Hf, Mo, Nb, Ta, V, W, and Zr as dopants. Using periodic slab models with large</div><div>supercells and state-of-the-art density functional theory based calculations we show that CO2 adsorption is enhanced by doping with metals down a group but worsened along the d series. Adsorption sites, dispersion and coverage appear to play a minor, secondary constant effect. The dopant-induced adsorption enhancement is highly biased by the charge rearrangement at the surface. In all cases, CO2 activation is found but doping can shift the desorption temperature by up to 135 K.</div>


2020 ◽  
Vol 124 (29) ◽  
pp. 15969-15976 ◽  
Author(s):  
Martí López ◽  
Francesc Viñes ◽  
Michael Nolan ◽  
Francesc Illas

RSC Advances ◽  
2016 ◽  
Vol 6 (20) ◽  
pp. 16197-16202 ◽  
Author(s):  
Qinggao Wang ◽  
Konstantin E. German ◽  
Artem R. Oganov ◽  
Huafeng Dong ◽  
Oleg D. Feya ◽  
...  

A simple understanding on the trend of stability for transition metal carbides.


2011 ◽  
Vol 31 (3) ◽  
pp. 421-427 ◽  
Author(s):  
Ji Zou ◽  
Guo-Jun Zhang ◽  
Shi-Kuan Sun ◽  
Hai-Tao Liu ◽  
Yan-Mei Kan ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document