Tuning Transition Metal Carbides Activity by Surface Metal Alloying: Case Study on CO2 Capture and Activation

Author(s):  
Marti Lopez ◽  
Luke Broderick ◽  
John J Carey ◽  
Francesc Vines ◽  
Michael Nolan ◽  
...  

<div>CO2 is one of the main actors in the greenhouse effect and its removal from the atmosphere is becoming an urgent need. Thus, CO2 capture and storage (CCS) and CO2 capture and usage (CCU) technologies are intensively investigated as technologies to decrease the concentration</div><div>of atmospheric CO2. Both CCS and CCU require appropriate materials to adsorb/release and adsorb/activate CO2, respectively. Recently, it has been theoretically and experimentally shown that transition metal carbides (TMC) are able to capture, store, and activate CO2. To further improve the adsorption capacity of these materials, a deep understanding of the atomic level processes involved is essential. In the present work, we theoretically investigate the possible effects of surface metal doping of these TMCs by taking TiC as a textbook case and Cr, Hf, Mo, Nb, Ta, V, W, and Zr as dopants. Using periodic slab models with large</div><div>supercells and state-of-the-art density functional theory based calculations we show that CO2 adsorption is enhanced by doping with metals down a group but worsened along the d series. Adsorption sites, dispersion and coverage appear to play a minor, secondary constant effect. The dopant-induced adsorption enhancement is highly biased by the charge rearrangement at the surface. In all cases, CO2 activation is found but doping can shift the desorption temperature by up to 135 K.</div>

2018 ◽  
Author(s):  
Marti Lopez ◽  
Luke Broderick ◽  
John J Carey ◽  
Francesc Vines ◽  
Michael Nolan ◽  
...  

<div>CO2 is one of the main actors in the greenhouse effect and its removal from the atmosphere is becoming an urgent need. Thus, CO2 capture and storage (CCS) and CO2 capture and usage (CCU) technologies are intensively investigated as technologies to decrease the concentration</div><div>of atmospheric CO2. Both CCS and CCU require appropriate materials to adsorb/release and adsorb/activate CO2, respectively. Recently, it has been theoretically and experimentally shown that transition metal carbides (TMC) are able to capture, store, and activate CO2. To further improve the adsorption capacity of these materials, a deep understanding of the atomic level processes involved is essential. In the present work, we theoretically investigate the possible effects of surface metal doping of these TMCs by taking TiC as a textbook case and Cr, Hf, Mo, Nb, Ta, V, W, and Zr as dopants. Using periodic slab models with large</div><div>supercells and state-of-the-art density functional theory based calculations we show that CO2 adsorption is enhanced by doping with metals down a group but worsened along the d series. Adsorption sites, dispersion and coverage appear to play a minor, secondary constant effect. The dopant-induced adsorption enhancement is highly biased by the charge rearrangement at the surface. In all cases, CO2 activation is found but doping can shift the desorption temperature by up to 135 K.</div>


2018 ◽  
Vol 20 (34) ◽  
pp. 22179-22186 ◽  
Author(s):  
Martí López ◽  
Luke Broderick ◽  
John J. Carey ◽  
Francesc Viñes ◽  
Michael Nolan ◽  
...  

The CO2capture and activation on early transition metal carbides can be fine-tuned by surface doping of similar metals as evidenced by state-of-the-art density functional simulations of the adsorption and desorption rates on suited models.


2016 ◽  
Vol 9 (1) ◽  
pp. 141-144 ◽  
Author(s):  
Christian Kunkel ◽  
Francesc Viñes ◽  
Francesc Illas

Transition metal carbides are posed as promising materials for carbon dioxide (CO2) capture and storage at room temperature and low pressures, as shown by density functional simulations on proper models, and estimates of adsorption/desorption rates. Aside, the activated nature of the adsorbed CO2 opens the path for its conversion into other valuable chemicals.


2020 ◽  
Vol 124 (29) ◽  
pp. 15969-15976 ◽  
Author(s):  
Martí López ◽  
Francesc Viñes ◽  
Michael Nolan ◽  
Francesc Illas

2015 ◽  
Vol 17 (7) ◽  
pp. 5000-5005 ◽  
Author(s):  
Eunjeong Yang ◽  
Hyunjun Ji ◽  
Jaehoon Kim ◽  
Heejin Kim ◽  
Yousung Jung

MXenes are predicted to be a family of promising Na anode materials with desirable electrochemical properties using density functional theory.


2021 ◽  
Author(s):  
Dong Tian ◽  
Steven R. Denny ◽  
Kongzhai Li ◽  
Hua Wang ◽  
Shyam Kattel ◽  
...  

This review summarizes density functional theory (DFT) studies of TMCs and TMNs as electrocatalysts. It provides atomistic details of HER, OER, ORR, N2RR and CO2RR and also presents a future outlook in designing TMCs and TMNs based electrocatalysts.


ACS Nano ◽  
2017 ◽  
Vol 11 (11) ◽  
pp. 10825-10833 ◽  
Author(s):  
Neng Li ◽  
Xingzhu Chen ◽  
Wee-Jun Ong ◽  
Douglas R. MacFarlane ◽  
Xiujian Zhao ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document