Effect of nonparabolicity on the binding energy of a hydrogenic donor in a quantum well with a magnetic field

1986 ◽  
Vol 33 (6) ◽  
pp. 4002-4004 ◽  
Author(s):  
K. Jayakumar ◽  
S. Balasubramanian ◽  
M. Tomak
2002 ◽  
Vol 91 (1) ◽  
pp. 232 ◽  
Author(s):  
M. Bouhassoune ◽  
R. Charrour ◽  
M. Fliyou ◽  
D. Bria ◽  
A. Nougaoui

2013 ◽  
Vol 380-384 ◽  
pp. 4841-4844 ◽  
Author(s):  
Guang Xin Wang ◽  
Xiu Zhi Duan

The binding energy of a hydrogenic donor impurity in cylindrical GaAs quantum ring (QR) subjected to an external magnetic field is calculated within the effect mass approximation using variational method. The binding energy as a function of the QR size (the inner radius, the outer radius), the impurity position and the applied magnetic field is investigated. The results demonstrate that the ground state binding energy behaves as an decreasing function of the outer radius, and the magnetic field. Likewise, the binding energy is an increasing function of the inner radius. The binding energy firstly increases and then decreases with shifting the impurity ion from the internal surface of the QR to the external surface, indicating that there is a maximum.


2019 ◽  
Vol 33 (21) ◽  
pp. 1950239 ◽  
Author(s):  
Xiu-Qing Wang ◽  
Ying-Jie Chen ◽  
Jing-Lin Xiao

The ground state binding energy (E[Formula: see text]) and the mean number of LO phonons (N) of the strong-coupling magneto-polaron (SCMP) in an asymmetrical semi-exponential quantum well (ASEQW) are studied theoretically. Temperature (T) effects on E[Formula: see text] and N are acquired with the quantum statistics theory (QST). By using the Lee-Low-Pines unitary transformation (LLPUT) and linear combination operation method (LCOM), the variations of E[Formula: see text] and N with T and [Formula: see text] of magnetic field are discussed. The investigated results indicate that both T and [Formula: see text] have great influence on E[Formula: see text] and N of LO phonons.


Sign in / Sign up

Export Citation Format

Share Document