Effects of temperature and magnetic field on the ground state binding energy of the strong coupling magneto-polaron in an RbCl asymmetrical semi-exponential quantum well

2019 ◽  
Vol 33 (21) ◽  
pp. 1950239 ◽  
Author(s):  
Xiu-Qing Wang ◽  
Ying-Jie Chen ◽  
Jing-Lin Xiao

The ground state binding energy (E[Formula: see text]) and the mean number of LO phonons (N) of the strong-coupling magneto-polaron (SCMP) in an asymmetrical semi-exponential quantum well (ASEQW) are studied theoretically. Temperature (T) effects on E[Formula: see text] and N are acquired with the quantum statistics theory (QST). By using the Lee-Low-Pines unitary transformation (LLPUT) and linear combination operation method (LCOM), the variations of E[Formula: see text] and N with T and [Formula: see text] of magnetic field are discussed. The investigated results indicate that both T and [Formula: see text] have great influence on E[Formula: see text] and N of LO phonons.

2021 ◽  
pp. 2150273
Author(s):  
Saren Gaowa ◽  
Xiu-Juan Miao ◽  
Jing-Lin Xiao ◽  
Cui-Lan Zhao

This paper utilized the methods of linear combination and unitary transformation to evaluate the vibrational frequency (VF) and ground state binding energy (GSBE) of a strong-coupling magnetopolaron in an asymmetrical Gaussian potential quantum well (AGPQW), and the effects of the temperature on these physical quantities were studied through quantum statistical theory. The changes of the VF and GSBE versus temperature and cyclotron frequency (CF) in a magnetic field were discussed. The numerical calculations revealed that with the increase of temperature, the VF and GSBE also increased. Meanwhile, the numerical results show that the VF increases with the increase of the CF. However, the GSBE versus the CF has different changing properties.


2008 ◽  
Vol 22 (12) ◽  
pp. 1923-1932
Author(s):  
JIA LIU ◽  
ZI-YU CHEN

The influence of a perpendicular magnetic field on a bound polaron near the interface of a polar–polar semiconductor with Rashba effect has been investigated. The material is based on a GaAs / Al x Ga 1-x As heterojunction and the Al concentration varying from 0.2 ≤ x ≤ 0.4 is the critical value below which the Al x Ga 1-x As is a direct band gap semiconductor.The external magnetic field strongly altered the ground state binding energy of the polaron and the Rashba spin–orbit (SO) interaction originating from the inversion asymmetry in the heterostructure splitting of the ground state binding energy of the bound polaron. How the ground state binding energy will be with the change of the external magnetic field, the location of a single impurity and the electron area density have been shown in this paper, taking into account the SO coupling. The contribution of the phonons are also considered. It is found that the spin-splitting states of the bound polaron are more stable, and, in the condition of weak magnetic field, the Zeeman effect can be neglected.


NANO ◽  
2016 ◽  
Vol 11 (03) ◽  
pp. 1650029 ◽  
Author(s):  
Wei Xiao ◽  
Jing-Lin Xiao

The properties of an electron strongly coupled to longitudinal optical (LO) phonon in RbCl parabolic quantum dot (PQD) with a hydrogen-like impurity at the center were investigated at a finite temperature. We have obtained the vibrational frequency of a strong-coupling polaron in RbCl PQD by using linear combination operator method. We then calculate the effects of temperature, the Coulombic impurity potential and the effective confinement strength on the vibrational frequency by using unitary transformation and the quantum statistics theory methods. The influences of the temperature, the Coulombic impurity potential and the effective confinement strength on the ground state energy and the ground state binding energy are also analyzed. The strengths of these quantities increase with raising temperature. The vibrational frequency is an increasing function of the Coulombic impurity potential and the effective confinement strength. The ground state energy is an increasing function of the effective confinement strength, whereas it is a decreasing one of the Coulombic impurity potential. The ground state binding energy is an increasing function of the Coulombic impurity potential, whereas it is a decayed one of the effective confinement strength.


2020 ◽  
Vol 34 (12) ◽  
pp. 2050114
Author(s):  
Xiu-Juan Miao ◽  
Yong Sun ◽  
Jing-Lin Xiao

The influences of temperature and cyclotron frequency of a magnetic field on the ground state energy and mean number of phonons (MNP) of strong-coupling magnetopolarons in an asymmetric Gaussian potential quantum well(AGPQW) are researched by employing the linear-combination operator method and the unitary transformation. It was demonstrated through the numerical calculations that the ground state energy and the MNP increase with higher magnetic field cyclotron frequencies and temperature. In addition, increasing of the barrier of asymmetric Gaussian potential (AGP) causes the ground state energy to decrease while increasing the MNP of magnetopolarons.


Sign in / Sign up

Export Citation Format

Share Document