Absorption intensities of the multipole-field-induced double transitions involving a homonuclear-heteronuclear pair of hydrogen molecules in condensed phase

2003 ◽  
Vol 68 (18) ◽  
Author(s):  
Adya P. Mishra ◽  
Robert W. Field
Author(s):  
Valery P. Sinditskii ◽  
Viacheslav Yu. Egorshev ◽  
Valery V. Serushkin ◽  
Anton I. Levshenkov ◽  
Maxim V. Berezin ◽  
...  

2020 ◽  
Vol 16 (4) ◽  
pp. 488-493
Author(s):  
Naoya Okumura ◽  
Naoya Jinno ◽  
Kentaro Taniguchi ◽  
Kenichi Tanabe ◽  
Sadako Nakamura ◽  
...  

Background: Soybean is rich in dietary fibers; consequently, soybean ingestion considerably increases the breath level of hydrogen molecules via anaerobic colonic fermentation. However, the influence of cooking methods on this effect, which can affect the overall health benefits of soybean, remains unknown. Objectives: The aim is to examine whether different methods of cooking soybean affect the colonic fermentation process. Methods: Nine healthy adult volunteers participated in the study; they ingested either roasted soybean flour (kinako) or well-boiled soybean (BS). Differences in their breath components were compared. Both test meals were cooked using 80 g of soybeans per individual. After a 12 h fast, the participants ate the test meals, and their breath hydrogen level was analyzed every 1 h for 9 h by using a gas chromatograph with a semiconductor detector. In addition, particle size distribution and soluble/ insoluble fibers in the feces were examined. Results: The oro-cecal transit time did not significantly differ between individuals who ingested kinako and BS. However, the area under the curve between 7 and 9 h after the ingestion of BS was significantly increased compared with that after the ingestion of kinako. The nutritional analysis indicated that the content of both soluble and insoluble fibers in BS was higher than that in kinako. In addition, the levels of unfermented fragments and soluble/insoluble fibers in the feces were increased after the ingestion of kinako compared with those after the ingestion of kinako. Conclusion: Cooking methods alter the composition of non-digestible fibers in soybean, and this can result in the lack of fermentative particles in the feces, thereby causing alterations in the breath level of hydrogen via colonic fermentation.


1988 ◽  
Vol 53 (9) ◽  
pp. 1919-1942 ◽  
Author(s):  
Josef Paldus ◽  
Paul E. S. Wormer ◽  
Marc Benard

The performance of various variational and non-variational approaches to the many-electron correlation problem is examined for a simple four-electron model system consisting of two stretched hydrogen molecules in trapezoidal, rectangular and linear configurations, in which the degree of quasi-degeneracy can be continuously varied from a non-degenerate to an almost degenerate situation. In contrast to an earlier work (K. Jankowski and J. Paldus, Int. J. Quantum Chem. 18, 1243 (1980)) we employ a double-zeta plus polarization basis and examine both single reference and multireference configuration interaction and coupled-cluster-type approaches. The performance of various Davidson-type corrections is also investigated.


2021 ◽  
Vol 22 (15) ◽  
pp. 7879
Author(s):  
Yingxia Gao ◽  
Yi Zheng ◽  
Léon Sanche

The complex physical and chemical reactions between the large number of low-energy (0–30 eV) electrons (LEEs) released by high energy radiation interacting with genetic material can lead to the formation of various DNA lesions such as crosslinks, single strand breaks, base modifications, and cleavage, as well as double strand breaks and other cluster damages. When crosslinks and cluster damages cannot be repaired by the cell, they can cause genetic loss of information, mutations, apoptosis, and promote genomic instability. Through the efforts of many research groups in the past two decades, the study of the interaction between LEEs and DNA under different experimental conditions has unveiled some of the main mechanisms responsible for these damages. In the present review, we focus on experimental investigations in the condensed phase that range from fundamental DNA constituents to oligonucleotides, synthetic duplex DNA, and bacterial (i.e., plasmid) DNA. These targets were irradiated either with LEEs from a monoenergetic-electron or photoelectron source, as sub-monolayer, monolayer, or multilayer films and within clusters or water solutions. Each type of experiment is briefly described, and the observed DNA damages are reported, along with the proposed mechanisms. Defining the role of LEEs within the sequence of events leading to radiobiological lesions contributes to our understanding of the action of radiation on living organisms, over a wide range of initial radiation energies. Applications of the interaction of LEEs with DNA to radiotherapy are briefly summarized.


Sign in / Sign up

Export Citation Format

Share Document