scholarly journals Competing density-wave orders in a one-dimensional hard-boson model

2004 ◽  
Vol 69 (7) ◽  
Author(s):  
Paul Fendley ◽  
K. Sengupta ◽  
Subir Sachdev
2013 ◽  
Vol 183 (1) ◽  
pp. 33-54 ◽  
Author(s):  
Vadim Ya. Pokrovskii ◽  
Sergey G. Zybtsev ◽  
Maksim V. Nikitin ◽  
Irina G. Gorlova ◽  
Venera F. Nasretdinova ◽  
...  

1984 ◽  
Vol 39 (9) ◽  
pp. 807-829
Author(s):  
Michael C. Böhm

The band structure of the metal-ligand-metal (M-L-M) bridged quasi one-dimensional (1D) cyclopentadienylmanganese polymer, MnCp 1, has been studied in the unoxidized state and in a partly oxidized modification with one electron removed from each second MnCp fragment. The tight-binding approach is based on a semiempirical self-consistent-field (SCF) Hartree-Fock (HF) crystal orbital (CO) model of the INDO-type (intermediate neglect of differential overlap) combined with a statistical averaging procedure which has its origin in the grand canonical ensemble. The latter approximation allows for an efficient investigation of violations of the translation symmetries in the oxidized 1D material. The oxidation process in 1 is both ligand- and metal-centered (Mn 3d-2 states). The mean-field minimum corresponds to a charge density wave (CDW) solution with inequivalent Mn sites within the employed repeat-units. The symmetry adapted solution with electronically identical 3d centers is a maximum in the variational space. The coupling of this electronic instability to geometrical deformations is also analyzed. The ligand amplitudes encountered in the hole-state wave function prevent extremely large charge separations between the 3d centers which are found in ID systems without bridging moieties (e.g. Ni(CN)2-5 chain). The symmetry reduction in oxidized 1 is compared with violations of spatial symmetries in finite transition metal derivatives and simple solids. The stabilization of the valence bond-type (VB) solution is physically rationalized (i.e. left-right correlations between the 3d centers). The computational results derived for 1 are generalized to oxidized transition metal chains with band occupancies that are simple fractions of the number of stacking units and to 1D systems that deviate from this relation. The entropy-influence for temperatures T ≠ 0 is shortly discussed (stabilization of domain or cluster structures).


1999 ◽  
Vol 38 (8) ◽  
pp. 1894-1899 ◽  
Author(s):  
Masahiro Yamashita ◽  
Toshio Manabe ◽  
Kazuo Inoue ◽  
Takuya Kawashima ◽  
Hiroshi Okamoto ◽  
...  

2002 ◽  
Vol 12 (9) ◽  
pp. 61-64
Author(s):  
C. Pasquier ◽  
M. Héritier ◽  
D. Jérome

We present a model comparing the free energy of a phase exhibiting a segregation between spin density wave (SDW) and metallic domains (eventually superconducting domains) and the free energy of homogeneous phases which explains the findings observed recently in (TMTSF)2PF6. The dispersion relation of this quasi-one-dimensional organic conductor is linearized around the Fermi level. Deviations from perfect nesting which stabilizes the SDW state are described by a unique parameter t$'_b$, this parameter can be the pressure as well.


2017 ◽  
Vol 7 ◽  
pp. 3277-3280 ◽  
Author(s):  
N. Habiballah ◽  
M. Zouadi ◽  
A. Arbaoui ◽  
M. Qjani ◽  
J. Dumas

Sign in / Sign up

Export Citation Format

Share Document