Energy spectrum of layered semiconductors in a magnetic field parallel to the layers: Voigt geometry

2010 ◽  
Vol 82 (19) ◽  
Author(s):  
K. H. Yoo ◽  
L. R. Ram-Mohan

Both the penetrating power of the cosmic rays through material ab­sorbers and their ability to reach the earth in spite of its magnetic field, make it certain that the energy of many of the primary particles must reach at least 10 11 e-volts. However, the energy measurements by Kunze, and by Anderson, using cloud chambers in strong magnetic fields, have extended only to about 5 x 10 9 e-volts. Particles of greater energy were reported, but the curvature of their tracks was too small to be measured with certainty. We have extended these energy measurements to somewhat higher energies, using a large electro-magnet specially built for the purpose and described in Part I. As used in these experiments, the magnet allowed the photography of tracks 17 cm long in a field of about 14,000 gauss. The magnet weighed about 11,000 kilos and used a power of 25 kilowatts.


2021 ◽  
Vol 503 (4) ◽  
pp. 5274-5290
Author(s):  
A K Sen ◽  
V B Il’in ◽  
M S Prokopjeva ◽  
R Gupta

ABSTRACT We present the results of our BVR-band photometric and R-band polarimetric observations of ∼40 stars in the periphery of the dark cloud CB54. From different photometric data, we estimate E(B − V) and E(J − H). After involving data from other sources, we discuss the extinction variations towards CB54. We reveal two main dust layers: a foreground, E(B − V) ≈ 0.1 mag, at ∼200 pc and an extended layer, $E(B-V) \gtrsim 0.3$ mag, at ∼1.5 kpc. CB54 belongs to the latter. Based on these results, we consider the reason for the random polarization map that we have observed for CB54. We find that the foreground is characterized by low polarization ($P \lesssim 0.5$ per cent) and a magnetic field parallel to the Galactic plane. The extended layer shows high polarization (P up to 5–7 per cent). We suggest that the field in this layer is nearly perpendicular to the Galactic plane and both layers are essentially inhomogeneous. This allows us to explain the randomness of polarization vectors around CB54 generally. The data – primarily observed by us in this work for CB54, by A. K. Sen and colleagues in previous works for three dark clouds CB3, CB25 and CB39, and by other authors for a region including the B1 cloud – are analysed to explore any correlation between polarization, the near-infrared, E(J − H), and optical, E(B − V), excesses, and the distance to the background stars. If polarization and extinction are caused by the same set of dust particles, we should expect good correlations. However, we find that, for all the clouds, the correlations are not strong.


2009 ◽  
Vol 24 (08n09) ◽  
pp. 1549-1556 ◽  
Author(s):  
V. B. BEZERRA ◽  
GEUSA DE A. MARQUES

We consider the problem of a relativistic electron in the presence of a Coulomb potential and a magnetic field in the background spacetime corresponding to a cosmic string. We find the solution of the corresponding Dirac equation and determine the energy spectrum of the particle.


1994 ◽  
Vol 3 (1-6) ◽  
pp. 57-65
Author(s):  
A. V. Germanenko ◽  
G. M. Minkov ◽  
E. L. Rumyantsev ◽  
O. E. Rut

Author(s):  
И.А. Ларкин ◽  
Ю.Н. Ханин ◽  
Е.Е. Вдовин

The behavior of the photocurrent in GaAs / AlAs p-i-n heterostructures is studied in a magnetic field parallel to the heterolayers in the wavelength range from 395 to 650 nm. A strong dependence of the non-oscillating component of the photocurrent on the radiation wavelength associated with the suppression of the diffusion current by the magnetic field was found. It is shown that the behavior of the oscillating component of the photocurrent in a magnetic field does not depend on the wavelength of light and is determined by the transfer of electrons through the dimensional quantization level in a triangular near-barrier well. It is shown that the suppression of the oscillating component by the magnetic field is due to the smearing of the level in the triangular well due to the motion of electrons parallel to the walls of the well and perpendicular to the magnetic field.


Sign in / Sign up

Export Citation Format

Share Document