scholarly journals Effect of strain on low-loss electron energy loss spectra of group-III nitrides

2011 ◽  
Vol 84 (24) ◽  
Author(s):  
J. Palisaitis ◽  
C.-L. Hsiao ◽  
M. Junaid ◽  
J. Birch ◽  
L. Hultman ◽  
...  
2002 ◽  
Vol 14 (48) ◽  
pp. 12793-12800 ◽  
Author(s):  
R Jones ◽  
C J Fall ◽  
A Guti rrez-Sosa ◽  
U Bangert ◽  
M I Heggie ◽  
...  

Author(s):  
C P Scott ◽  
A J Craven ◽  
C J Gilmore ◽  
A W Bowen

The normal method of background subtraction in quantitative EELS analysis involves fitting an expression of the form I=AE-r to an energy window preceding the edge of interest; E is energy loss, A and r are fitting parameters. The calculated fit is then extrapolated under the edge, allowing the required signal to be extracted. In the case where the characteristic energy loss is small (E < 100eV), the background does not approximate to this simple form. One cause of this is multiple scattering. Even if the effects of multiple scattering are removed by deconvolution, it is not clear that the background from the recovered single scattering distribution follows this simple form, and, in any case, deconvolution can introduce artefacts.The above difficulties are particularly severe in the case of Al-Li alloys, where the Li K edge at ~52eV overlaps the Al L2,3 edge at ~72eV, and sharp plasmon peaks occur at intervals of ~15eV in the low loss region. An alternative background fitting technique, based on the work of Zanchi et al, has been tested on spectra taken from pure Al films, with a view to extending the analysis to Al-Li alloys.


Author(s):  
Eckhard Quandt ◽  
Stephan laBarré ◽  
Andreas Hartmann ◽  
Heinz Niedrig

Due to the development of semiconductor detectors with high spatial resolution -- e.g. charge coupled devices (CCDs) or photodiode arrays (PDAs) -- the parallel detection of electron energy loss spectra (EELS) has become an important alternative to serial registration. Using parallel detection for recording of energy spectroscopic large angle convergent beam patterns (LACBPs) special selected scattering vectors and small detection apertures lead to very low intensities. Therefore the very sensitive direct irradiation of a cooled linear PDA instead of the common combination of scintillator, fibre optic, and semiconductor has been investigated. In order to obtain a sufficient energy resolution the spectra are optionally magnified by a quadrupole-lens system.The detector used is a Hamamatsu S2304-512Q linear PDA with 512 diodes and removed quartz-glas window. The sensor size is 13 μm ∗ 2.5 mm with an element spacing of 25 μm. Along with the dispersion of 3.5 μm/eV at 40 keV the maximum energy resolution is limited to about 7 eV, so that a magnification system should be attached for experiments requiring a better resolution.


1986 ◽  
Vol 58 (1) ◽  
pp. 75-77 ◽  
Author(s):  
M. Nishijima ◽  
M. Jo ◽  
Y. Kuwahara ◽  
M. Onchi

Sign in / Sign up

Export Citation Format

Share Document