scholarly journals Large magnetic thermal conductivity induced by frustration in low-dimensional quantum magnets

2019 ◽  
Vol 99 (13) ◽  
Author(s):  
Jan Stolpp ◽  
Shang-Shun Zhang ◽  
Fabian Heidrich-Meisner ◽  
Cristian D. Batista
2000 ◽  
Vol 626 ◽  
Author(s):  
Harald Beyer ◽  
Joachim Nurnus ◽  
Harald Böttner ◽  
Armin Lambrecht ◽  
Lothar Schmitt ◽  
...  

ABSTRACTThermoelectric properties of low dimensional structures based on PbTe/PbSrTe-multiple quantum-well (MQW)-structures with regard to the structural dimensions, doping profiles and levels are presented. Interband transition energies and barrier band-gap are determined from IR-transmission spectra and compared with Kronig-Penney calculations. The influence of the data evaluation method to obtain the 2D power factor will be discussed. The thermoelectrical data of our layers show a more modest enhancement in the power factor σS2 compared with former publications and are in good agreement with calculated data from Broido et al. [5]. The maximum allowed doping level for modulation doped MQW structures is determined. Thermal conductivity measurements show that a ZT enhancement can be achieved by reducing the thermal conductivity due to interface scattering. Additionally promising lead chalcogenide based superlattices for an increased 3D figure of merit are presented.


Nanoscale ◽  
2021 ◽  
Author(s):  
Hongying Wang ◽  
Yajuan Cheng ◽  
Zheyong Fan ◽  
Yangyu Guo ◽  
Zhongwei Zhang ◽  
...  

Nanophononic metamaterials have broad applications in fields such as heat management, thermoelectric energy conversion, and nanoelectronics. Phonon resonance in pillared low-dimensional structures has been suggested to be a feasible approach...


1998 ◽  
Vol 545 ◽  
Author(s):  
G. Chen ◽  
S. G. Volz ◽  
T. Borca-Tasciuc ◽  
T. Zeng ◽  
D. Song ◽  
...  

AbstractUnderstanding phonon heat conduction mechanisms in low-dimensional structures is of critical importance for low-dimensional thermoelectricity. In this paper, we discuss heat conduction mechanisms in two-dimensional (2D) and one-dimensional (1D) structures. Models based on both the phonon wave picture and particle picture are developed for heat conduction in 2D superlattices. The phonon wave model, based on the acoustic wave equations, includes the effects of phonon interference and tunneling, while the particle model, based on the Boltzmann transport equation, treats the internal as well interface scattering of phonons. For 1D systems, both the Boltzmann transport equation and molecular dynamics simulation approaches are employed. Comparing the modeling results with experimental data suggest that the interface scattering of phonons plays a crucial role in the thermal conductivity of low-dimensional structures. We also discuss the minimum thermal conductivity of low-dimensional structures based on a generalized thermal conductivity integral, and suggest that the minimum thermal conductivities of low-dimensional systems may differ from those of their corresponding bulk materials. The discussion leads to alternative ways to reduce thermal conductivity based on the propagating phonon modes.


2017 ◽  
Author(s):  
W. J.A. Blackmore ◽  
P. A. Goddard ◽  
F. Xiao ◽  
C. P. Landee ◽  
M. M. Turnbull ◽  
...  

2001 ◽  
Vol 691 ◽  
Author(s):  
Terry M. Tritt

ABSTRACTRecently, there has been a renewed interest in thermoelectric material research. There are a number of different systems of potential thermoelectric (TE) materials that are under investigation by various research groups. Some of these research efforts focus on minimizing lattice thermal conductivity while other efforts focus on materials that exhibit large power factors. An overview of some of the requirements and strategies for the investigation and optimization of a new system of materials for potential thermoelectric applications will be discussed. Some of the newer concepts such as low-dimensional systems and Slack's phononglass, electron-crystal concept will be discussed. Current strategies for minimizing lattice thermal conductivity and also minimum requirements for thermopower will be presented. The emphasis of this paper will be to identify some of the more recent promising bulk materials and discuss the challenges and issues related to each. This paper is targeted more at “newcomers” to the field and does not discuss some of the very interesting results that are being reported in the thin film and superlattice materials. Some of the bulk materials which will be discussed include complex chalcogenides (e.g.CsBi4Te6 and pentatellurides such as the Zr1−XHfXTe5 system), half-Heusler alloys (e.g. TiNiSn1−XSbX), ceramic oxides (NaCo4O2), skutterudites (e.g. YbXCo4−XSb12 or EuXCo4−XSb12) and clathrates (e.g. Sr8Ga16Ge30). Each of these systems is distinctly different yet each exhibits some prospect as a potential thermoelectric material. Results will be presented and discussed on each system of materials.


2016 ◽  
Vol 138 (7) ◽  
pp. 2280-2291 ◽  
Author(s):  
Leonardo H. R. Dos Santos ◽  
Arianna Lanza ◽  
Alyssa M. Barton ◽  
Jamie Brambleby ◽  
William J. A. Blackmore ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document