Effect of bulk constants on the binding energy of neutron matter and beta stability of a neutron star

1996 ◽  
Vol 53 (1) ◽  
pp. 505-507
Author(s):  
R. Rakshit ◽  
S. K. Choudhury
Universe ◽  
2021 ◽  
Vol 7 (1) ◽  
pp. 16
Author(s):  
Marcello Baldo

In neutron stars the nuclear asymmetric matter is expected to undergo phase transitions to a superfluid state. According to simple estimates, neutron matter in the inner crust and just below should be in the s-wave superfluid phase, corresponding to the neutron-neutron 1S0 channel. At higher density in the core also the proton component should be superfluid, while in the inner core the neutron matter can be in the 3P2 superfluid phase. Superluidity is believed to be at the basis of the glitches phenomenon and to play a decisive influence on many processes like transport, neutrino emission and cooling, and so on. One of the peculiarity of the superfluid phase is the presence of characteristic collective excitation, the so called ’phonons’, that correspond to smooth modulations of the order parameter and display a linear spectrum at low enough momentum. This paper is a brief review of the different phonons that can appear in Neutron Star superfuid matter and their role in several dynamical processes. Particular emphasis is put on the spectral functions of the different components, that is neutron, protons and electrons, which reveal their mutual influence. The open problems are discussed and indications on the work that remain to be done are given.


2011 ◽  
Author(s):  
J. P. W. Diener ◽  
F. G. Scholtz ◽  
Ersin Göğüş ◽  
Ünal Ertan ◽  
Tomaso Belloni

2014 ◽  
Vol 50 (2) ◽  
Author(s):  
S. Gandolfi ◽  
J. Carlson ◽  
S. Reddy ◽  
A. W. Steiner ◽  
R. B. Wiringa

2017 ◽  
Vol 2017 (11) ◽  
pp. 036-036 ◽  
Author(s):  
Andrea Gallo Rosso ◽  
Francesco Vissani ◽  
Maria Cristina Volpe

1978 ◽  
Vol 225 ◽  
pp. 708 ◽  
Author(s):  
I. Goldman ◽  
N. Rosen

2011 ◽  
Vol 26 (05) ◽  
pp. 367-375 ◽  
Author(s):  
A. SULAKSONO ◽  
MARLIANA ◽  
KASMUDIN

The effects of the presence of weakly interacting light boson (WILB) in neutron star matter have been revisited. Direct checking based on the experimental range of symmetric nuclear matter binding energy1 and the fact that the presence of this boson should give no observed effect on the crust properties of neutron star matter, shows that the characteristic scale of WILB [Formula: see text] should be ≤2 GeV-2. The recent observational data with significant low neutron stars radii2 and the recent largest pulsar which has been precisely measured, i.e. J1903+0327 (Ref. 3) indicate that in-medium modification of WILB mass in neutron stars cannot be neglected.


1988 ◽  
Vol 108 ◽  
pp. 424-425
Author(s):  
Hideyuki Suzuki ◽  
Katsuhiko Sato

A massive star has been believed to end his life with the collapsed driven supernova explosion and the formation of the compact object such as a neutron star or a black hole. When the compact object is formed, a large amount of energy corresponding to the binding energy of the object must be released. It has been considered that most of the energy is emitted by neutrinos because of their adequate coupling with the matter. The observation of the neutrino burst from SN1987A by Kamiokande and IMB offered us the first chance to test these scenarios of the collapse driven supernova explosion directly. We began to analyze the data just after their publication and got many important results which are presented below. In our analysis the distance of SN1987A is assumed to be 50kpc.


The composition of the neutron stars from its surface region, outer-core, inner-core, and to its center is still being investigated. One can only surmise on the properties of neutron stars from the spectroscopic data that may be available from time to time. A few models have suggested that the matter at the surface region of the neutron star is composed of atomic nuclei that get crushed under extremely large pressure and gravitational stress, and this leads to the creation of solid lattice with a sea of electrons, and perhaps some protons, flowing through the gaps between them. Nuclei with high mass numbers, such as ferrous, gold, platinum, uranium, may exist in the surface region or in the outer-core region. It is found that the structure of the neutron star changes very much as one goes from the surface to the core of the neutron star. The surface region is extremely hard and very smooth. Surface irregularities are hardly of the order of 5 mm, whereas the interior of the neutron star may be superfluid and composed of neutron-degenerate matter. However, the neutron star is highly compact crystalline systems, and in terrestrial materials under pressure, many examples of incommensurate phase transitions have been discovered. Consequently, the properties of incommensurate crystalline neutron star have been studied. The composition of the neutron stars in the super dense state remains uncertain in the core of the neutron star. One model describes the core as superfluid neutron-degenerate matter, mostly, composed of neutrons , and a small percentage of protons and electrons More exotic forms of matter are possible, including degenerate strange matter. It could also be incommensurate crystalline neutron matter that could be BCC or HCP. Using principles of quantum statistical mechanics, the specific heat and entropy of the incommensurate crystalline neutron star has been calculated assuming that the temperature of the star may vary between to . Two values for the temperature T that have been arbitrarily chosen for which the calculations have been done are and . The values of specific heat and entropy decrease as the temperature increases, and also, their magnitudes are very small. This is in line with the second law of thermodynamics.


Sign in / Sign up

Export Citation Format

Share Document