scholarly journals Nuclear matter symmetry energy at0.03⩽ρ/ρ0⩽0.2

2012 ◽  
Vol 85 (6) ◽  
Author(s):  
R. Wada ◽  
K. Hagel ◽  
L. Qin ◽  
J. B. Natowitz ◽  
Y. G. Ma ◽  
...  
2017 ◽  
Vol 26 (05) ◽  
pp. 1750022 ◽  
Author(s):  
B. K. Agrawal ◽  
S. K. Samaddar ◽  
J. N. De ◽  
C. Mondal ◽  
Subhranil De

In the framework of an equation of state (EoS) constructed from a momentum and density-dependent finite-range two-body effective interaction, the quantitative magnitudes of the different symmetry elements of infinite nuclear matter are explored. The parameters of this interaction are determined from well-accepted characteristic constants associated with homogeneous nuclear matter. The symmetry energy coefficient [Formula: see text], its density slope [Formula: see text], the symmetry incompressibility [Formula: see text] as well as the density-dependent incompressibility [Formula: see text] evaluated with this EoS are seen to be in good harmony with those obtained from other diverse perspectives. The higher order symmetry energy coefficients [Formula: see text], etc., are seen to be not very significant in the domain of densities relevant to finite nuclei, but gradually build up at supra-normal densities. The analysis carried out with a Skyrme-inspired energy density functional (EDF) obtained with the same input values for the empirical bulk data associated with nuclear matter yields nearly the same results.


2003 ◽  
Vol 12 (06) ◽  
pp. 755-770 ◽  
Author(s):  
FÁBIO L. BRAGHIN

Symmetry energy coefficients of explicitly isospin asymmetric nuclear matter at variable densities (from 0.5ρ0 up to 2ρ0) are studied as generalized screening functions. An extended stability condition for asymmetric nuclear matter is proposed. We find the possibility of obtaining stable asymmetric nuclear matter even in some cases for which the symmetric nuclear matter limit is unstable. Skyrme-type forces are extensively used in analytical expressions of the symmetry energy coefficients derived as generalized screening functions in the four channels of the particle hole interaction producing alternative behaviors at different ρ and b (respectively, the density and the asymmetry coefficient). The spin and spin-isospin coefficients, with corrections to the usual Landau Migdal parameters, indicate the possibility of occurring instabilities with common features depending on the nuclear density and n–p asymmetry. Possible relevance for high energy heavy ions collisions and astrophysical objects is discussed.


Sign in / Sign up

Export Citation Format

Share Document