scholarly journals Kinetic freeze-out conditions in nuclear collisions with 2A–158A GeV beam energy within a non-boost-invariant blast-wave model

2018 ◽  
Vol 98 (2) ◽  
Author(s):  
Sudhir Pandurang Rode ◽  
Partha Pratim Bhaduri ◽  
Amaresh Jaiswal ◽  
Ankhi Roy
Entropy ◽  
2021 ◽  
Vol 23 (7) ◽  
pp. 803
Author(s):  
Hai-Ling Lao ◽  
Fu-Hu Liu ◽  
Bo-Qiang Ma

The transverse momentum spectra of different types of particles, π±, K±, p and p¯, produced at mid-(pseudo)rapidity in different centrality lead–lead (Pb–Pb) collisions at 2.76 TeV; proton–lead (p–Pb) collisions at 5.02 TeV; xenon–xenon (Xe–Xe) collisions at 5.44 TeV; and proton–proton (p–p) collisions at 0.9, 2.76, 5.02, 7 and 13 TeV, were analyzed by the blast-wave model with fluctuations. With the experimental data measured by the ALICE and CMS Collaborations at the Large Hadron Collider (LHC), the kinetic freeze-out temperature, transverse flow velocity and proper time were extracted from fitting the transverse momentum spectra. In nucleus–nucleus (A–A) and proton–nucleus (p–A) collisions, the three parameters decrease with the decrease of event centrality from central to peripheral, indicating higher degrees of excitation, quicker expansion velocities and longer evolution times for central collisions. In p–p collisions, the kinetic freeze-out temperature is nearly invariant with the increase of energy, though the transverse flow velocity and proper time increase slightly, in the considered energy range.


2020 ◽  
Vol 35 (14) ◽  
pp. 2050115 ◽  
Author(s):  
Khusniddin K. Olimov ◽  
Shakhnoza Z. Kanokova ◽  
Kosim Olimov ◽  
Kadyr G. Gulamov ◽  
Bekhzod S. Yuldashev ◽  
...  

The experimental invariant transverse momentum [Formula: see text] spectra of the charged pions and kaons, protons and antiprotons, produced at midrapidity in central (0–10%) Au[Formula: see text]Au collisions at [Formula: see text], central (0–10%) Cu[Formula: see text]Cu collisions at [Formula: see text], central (0–10%) Au[Formula: see text]Au collisions at [Formula: see text], and central (0–5%) Pb[Formula: see text]Pb collisions at [Formula: see text], measured by BRAHMS, STAR and ALICE collaborations, were analyzed using three different transverse expansion (blast-wave) models: Siemens–Rasmussen blast-wave model, Simple transverse flow model, and Simplified (hydro-inspired) blast-wave model of Schnedermann et al. Combined (simultaneous) minimum [Formula: see text] fits of the experimental invariant [Formula: see text] spectra of the charged pions and kaons, protons and antiprotons with the above three model functions were conducted, using the identical selected optimal fitting ranges in [Formula: see text] in each studied collision system, and the values of the average transverse expansion velocity [Formula: see text] and global kinetic freeze-out temperature [Formula: see text] and their dependencies on the collision system [Formula: see text] and [Formula: see text] were extracted. The combined (simultaneous) fits using Hagedorn formula with the (embedded) simple transverse flow describe well the experimental invariant [Formula: see text] spectra of the charged pions, kaons, protons and antiprotons in the whole measured range in region [Formula: see text] in the analyzed central heavy ion collisions at RHIC and LHC, reproducing qualitatively well all the established dependencies of the parameters [Formula: see text] and [Formula: see text] on the collision system [Formula: see text] and [Formula: see text]. The obtained results were compared with those of the previous analyses of high energy heavy ion collisions.


2016 ◽  
Vol 2016 ◽  
pp. 1-10 ◽  
Author(s):  
S. Zhang ◽  
Y. G. Ma ◽  
J. H. Chen ◽  
C. Zhong

The beam energy dependence of correlation lengths (the Hanbury-Brown-Twiss radii) is calculated by using a blast-wave model and the results are comparable with those from RHIC-STAR beam energy scan data as well as the LHC-ALICE measurements. A set of parameters for the blast-wave model as a function of beam energy under study are obtained by fit to the HBT radii at each energy point. The transverse momentum dependence of HBT radii is presented with the extracted parameters for Au+Au collision at sNN = 200 GeV and for Pb+Pb collisions at 2.76 TeV. From our study one can learn that particle emission duration cannot be ignored while calculating the HBT radii with the same parameters. And tuning kinetic freeze-out temperature in a range will result in system lifetime changing in the reverse direction as it is found in RHIC-STAR experiment measurements.


2015 ◽  
Vol 2015 ◽  
pp. 1-6 ◽  
Author(s):  
S. Zhang ◽  
Y. G. Ma ◽  
J. H. Chen ◽  
C. Zhong

The particle production of Kaon andΛis studied in nucleus-nucleus collisions at relativistic energy based on a chemical equilibrium blast-wave model. The transverse momentum spectra of Kaon andΛat the kinetic freeze-out stage from our model are in good agreement with the experimental results. The kinetic freeze-out parameters of temperatureTkinand radial flow parameterρ0are presented for the FOPI, RHIC, and LHC energies. And the resonance decay effect is also discussed. The systematic study for beam energy dependence of the strangeness particle production will help us to better understand the properties of the matter created in heavy-ion collisions at the kinetic freeze-out stage.


Sign in / Sign up

Export Citation Format

Share Document