scholarly journals Strong first order electroweak phase transition in gauge-Higgs unification at finite temperature

2020 ◽  
Vol 101 (3) ◽  
Author(s):  
Yuki Adachi ◽  
Nobuhito Maru
1993 ◽  
Vol 71 (5-6) ◽  
pp. 227-236 ◽  
Author(s):  
M. E. Carrington

There has been much recent interest in the finite-temperature effective potential of the standard model in the context of the electroweak phase transition. We review the calculation of the effective potential with particular emphasis on the validity of the expansions that are used. The presence of a term that is cubic in the Higgs condensate in the one-loop effective potential appears to indicate a first-order electroweak phase transition. However, in the high-temperature regime, the infrared singularities inherent in massless models produce cubic terms that are of the same order in the coupling. In this paper, we discuss the inclusion of an infinite set of these terms via the ring-diagram summation, and show that the standard model has a first-order phase transition in the weak coupling expansion.


1992 ◽  
Vol 03 (05) ◽  
pp. 773-781 ◽  
Author(s):  
MARCELO GLEISER ◽  
EDWARD W. KOLB

The phase transition associated with the standard electroweak model is very weakly first order. The weakness of the transition means that around the critical temperature the finite-temperature Higgs mass is much less than the critical temperature. This leads to infrared problems in the calculation of the parameters of the potential. Therefore, theories of electroweak baryogenesis, which depend on the details of the transition, must be calculated with care.


Symmetry ◽  
2020 ◽  
Vol 12 (5) ◽  
pp. 733 ◽  
Author(s):  
Eibun Senaha

Symmetries at finite temperature are of great importance to understand dynamics of spontaneous symmetry breaking phenomena, especially phase transitions in early Universe. Some symmetries such as the electroweak symmetry can be restored in hot environment. However, it is a nontrivial question that the phase transition occurs via first or second order, or even smooth crossover, which strongly depends on underlying physics. If it is first order, gravitational waves can be generated, providing a detectable signal of this epoch. Moreover, the baryon asymmetry of the Universe can also arise under some conditions. In this article, the electroweak phase transition is reviewed, focusing particularly on the case of the first-order phase transition. Much attention is paid to multi-step phase transitions in which additional symmetry breaking such as a spontaneous Z 2 breaking plays a pivotal role in broadening the possibility of the first-order electroweak phase transition. On the technical side, we review thermal resummation that mitigates a bad infrared behavior related to the symmetry restoration. In addition, gauge and scheme dependences of perturbative calculations are also briefly discussed.


2021 ◽  
Vol 2021 (3) ◽  
Author(s):  
Aleksandr Azatov ◽  
Miguel Vanvlasselaer ◽  
Wen Yin

Abstract In this paper we present a novel mechanism for producing the observed Dark Matter (DM) relic abundance during the First Order Phase Transition (FOPT) in the early universe. We show that the bubble expansion with ultra-relativistic velocities can lead to the abundance of DM particles with masses much larger than the scale of the transition. We study this non-thermal production mechanism in the context of a generic phase transition and the electroweak phase transition. The application of the mechanism to the Higgs portal DM as well as the signal in the Stochastic Gravitational Background are discussed.


2021 ◽  
Vol 2021 (3) ◽  
Author(s):  
Sebastian Baum ◽  
Marcela Carena ◽  
Nausheen R. Shah ◽  
Carlos E. M. Wagner ◽  
Yikun Wang

Abstract Electroweak baryogenesis is an attractive mechanism to generate the baryon asymmetry of the Universe via a strong first order electroweak phase transition. We compare the phase transition patterns suggested by the vacuum structure at the critical temperatures, at which local minima are degenerate, with those obtained from computing the probability for nucleation via tunneling through the barrier separating local minima. Heuristically, nucleation becomes difficult if the barrier between the local minima is too high, or if the distance (in field space) between the minima is too large. As an example of a model exhibiting such behavior, we study the Next-to-Minimal Supersymmetric Standard Model, whose scalar sector contains two SU(2) doublets and one gauge singlet. We find that the calculation of the nucleation probabilities prefers different regions of parameter space for a strong first order electroweak phase transition than the calculation based solely on the critical temperatures. Our results demonstrate that analyzing only the vacuum structure via the critical temperatures can provide a misleading picture of the phase transition patterns, and, in turn, of the parameter space suitable for electroweak baryogenesis.


2019 ◽  
Vol 64 (8) ◽  
pp. 710
Author(s):  
P. Minaiev ◽  
V. Skalozub

We investigate the electroweak phase transition (EWPT) in the Minimal (One Higgs doublet) Standard Model (SM) with account for the spontaneous generation of magnetic and chromo-magnetic fields. As it is known, in the SM for the mass of a Higgs boson greater than 75 GeV, this phase transition is of the second order. But, according to Sakharov’s conditions for the formation of the baryon asymmetry in the early Universe, it has to be strongly of the first order. In the Two Higgs doublets SM, there is a parametric space, where the first-order phase transition is realized for the realistic Higgs boson mass mH = 125 GeV. On the other hand, in the hot Universe, the spontaneous magnetization of a plasma had happened. The spontaneously generated (chromo) magnetic fields are temperature-dependent. They influence the EWРT. The color chromomagnetic fields B3 and B8 are created spontaneously in the gluon sector of QCD at a temperature T > Td higher the deconfinement temperature Td. The usual magnetic field H has also to be spontaneously generated. For T close to the TEWPT , these magnetic fields could change the kind of the phase transition.


2019 ◽  
Vol 34 (15) ◽  
pp. 1950073
Author(s):  
Vo Quoc Phong ◽  
Minh Anh Nguyen

Our analysis shows that SM-like electroweak phase transition (EWPT) in the [Formula: see text] (2-2-1) model is a first-order phase transition at the 200 GeV scale (the SM scale). Its strength [Formula: see text] is about 1–2.7 and the masses of new gauge bosons are larger than 1.7 TeV when the second VEV is larger than 535 GeV in a three-stage EWPT scenario and the coupling constant of [Formula: see text] group must be larger than 2. Therefore, this first-order EWPT can be used to fix VEVs and the coupling constant of the gauge group in electroweak models.


Sign in / Sign up

Export Citation Format

Share Document