scholarly journals Trace-anomaly-induced effective action for 2D and 4D dilaton coupled scalars

1998 ◽  
Vol 57 (4) ◽  
pp. 2363-2371 ◽  
Author(s):  
Shin’ichi Nojiri ◽  
Sergei D. Odintsov
1997 ◽  
Vol 12 (28) ◽  
pp. 2083-2087 ◽  
Author(s):  
Shin'ichi Nojiri ◽  
Sergei D. Odintsov

Using the results of the calculation of the one-loop effective action (E. Elizalde et al., Phys. Rev.D49, 2852 (1994)), we find the trace anomaly for most general conformally invariant 2-D dilaton coupled scalar–dilaton system (the contribution of dilaton itself is included). The nonlocal effective action induced by conformal anomaly for such system is found. That opens new possibilities in generalizing of CGHS-like model for the study of back-reaction of matter to 2-D black holes.


2010 ◽  
Vol 25 (11) ◽  
pp. 2391-2408 ◽  
Author(s):  
EMIL MOTTOLA

The trace anomaly of conformal matter implies the existence of massless scalar poles in physical amplitudes involving the stress-energy tensor. These poles may be described by a local effective action with massless scalar fields, which couple to classical sources, contribute to gravitational scattering processes, and can have long range gravitational effects at macroscopic scales. In an effective field theory approach, the effective action of the anomaly is an infrared relevant term that should be added to the Einstein-Hilbert action of classical General Relativity to take account of macroscopic quantum effects. The additional scalar degrees of freedom contained in this effective action may be understood as responsible for both the Casimir effect in flat spacetime and large quantum backreaction effects at the horizon scale of cosmological spacetimes. These effects of the trace anomaly imply that the cosmological vacuum energy is dynamical, and its value depends on macroscopic boundary conditions at the cosmological horizon scale, rather than sensitivity to the extreme ultraviolet Planck scale.


1995 ◽  
Vol 439 (3) ◽  
pp. 561-582 ◽  
Author(s):  
A.O. Barvinsky ◽  
Yu.V. Gusev ◽  
G.A. Vilkovisky ◽  
V.V. Zhytnikov

1990 ◽  
Vol 4 (6) ◽  
pp. 262
Author(s):  
P.R. Wyman

2021 ◽  
Vol 2021 (3) ◽  
Author(s):  
Pengfei Zhang

Abstract In this work, we study a generalization of the coupled Sachdev-Ye-Kitaev (SYK) model with U(1) charge conservations. The model contains two copies of the complex SYK model at different chemical potentials, coupled by a direct hopping term. In the zero-temperature and small coupling limit with small averaged chemical potential, the ground state is an eternal wormhole connecting two sides, with a specific charge Q = 0, which is equivalent to a thermofield double state. We derive the conformal Green’s functions and determine corresponding IR parameters. At higher chemical potential, the system transit into the black hole phase. We further derive the Schwarzian effective action and study its quench dynamics. Finally, we compare numerical results with the analytical predictions.


2021 ◽  
Vol 2021 (4) ◽  
Author(s):  
I. L. Buchbinder ◽  
E. A. Ivanov ◽  
V. A. Ivanovskiy

Abstract We develop a novel bi-harmonic $$ \mathcal{N} $$ N = 4 superspace formulation of the $$ \mathcal{N} $$ N = 4 supersymmetric Yang-Mills theory (SYM) in four dimensions. In this approach, the $$ \mathcal{N} $$ N = 4 SYM superfield constraints are solved in terms of on-shell $$ \mathcal{N} $$ N = 2 harmonic superfields. Such an approach provides a convenient tool of constructing the manifestly $$ \mathcal{N} $$ N = 4 supersymmetric invariants and further rewriting them in $$ \mathcal{N} $$ N = 2 harmonic superspace. In particular, we present $$ \mathcal{N} $$ N = 4 superfield form of the leading term in the $$ \mathcal{N} $$ N = 4 SYM effective action which was known previously in $$ \mathcal{N} $$ N = 2 superspace formulation.


2020 ◽  
Vol 2020 (11) ◽  
Author(s):  
Sebastian A. R. Ellis ◽  
Jérémie Quevillon ◽  
Pham Ngoc Hoa Vuong ◽  
Tevong You ◽  
Zhengkang Zhang

Abstract Recent development of path integral matching techniques based on the covariant derivative expansion has made manifest a universal structure of one-loop effective Lagrangians. The universal terms can be computed once and for all to serve as a reference for one-loop matching calculations and to ease their automation. Here we present the fermionic universal one-loop effective action (UOLEA), resulting from integrating out heavy fermions (Dirac or Majorana) with scalar, pseudo-scalar, vector and axial-vector couplings. We also clarify the relation of the new terms computed here to terms previously computed in the literature and those that remain to complete the UOLEA. Our results can be readily used to efficiently obtain analytical expressions for effective operators arising from heavy fermion loops [13].


Sign in / Sign up

Export Citation Format

Share Document