scholarly journals More on complex Sachdev-Ye-Kitaev eternal wormholes

2021 ◽  
Vol 2021 (3) ◽  
Author(s):  
Pengfei Zhang

Abstract In this work, we study a generalization of the coupled Sachdev-Ye-Kitaev (SYK) model with U(1) charge conservations. The model contains two copies of the complex SYK model at different chemical potentials, coupled by a direct hopping term. In the zero-temperature and small coupling limit with small averaged chemical potential, the ground state is an eternal wormhole connecting two sides, with a specific charge Q = 0, which is equivalent to a thermofield double state. We derive the conformal Green’s functions and determine corresponding IR parameters. At higher chemical potential, the system transit into the black hole phase. We further derive the Schwarzian effective action and study its quench dynamics. Finally, we compare numerical results with the analytical predictions.

2001 ◽  
Vol 15 (10n11) ◽  
pp. 1605-1608
Author(s):  
M. SAARELA ◽  
J. PAASO ◽  
E. KROTSCHECK ◽  
K. SCHÖRKHUBER

We have studied the ground state properties of two-dimensional 3 He -4 He mixtures at zero temperature. 3 He atoms with opposite spins form loosely bound dimers in free space and in low concentration mixtures with 4 He . The binding energy of the dimer ranges from milli-Kelvins near the saturation density to micro-Kelvins at the solidification density. The radius of such a weakly bound dimer is tens of Ångstöms. We also calculate the phase diagram of the mixture. The maximum solubility of 3 He ≈7% is determined by comparing chemical potentials in the pure and mixed fluids. The upper stability limit of the super-saturated mixture is obtained from the second derivative of the enthalpy. It becomes negative at the concentration 10-15% depending of the pressure, indicating a softening of the concentration-fluctuation mode. We also find an indication of the phase transition from the dimerized to atomic mixture.


2017 ◽  
Vol 26 (03) ◽  
pp. 1750001 ◽  
Author(s):  
Abdel Nasser Tawfik ◽  
Hayam Yassin ◽  
Eman R. Abo Elyazeed

The assumption that the production of quark–antiquark pairs and their sequential string-breaking takes place, likely as a tunneling process, through the event horizon of the color confinement determines the freezeout temperature and gives a plausible interpretation for the thermal pattern of elementary and nucleus–nucleus collisions. When relating the black-hole electric charges to the baryon-chemical potentials, it was found that the phenomenologically deduced parameters from the ratios of various particle species and the higher-order moments of net-proton multiplicity in the statistical thermal models and Polyakov linear-sigma model agree well with the ones determined from the thermal radiation from charged black hole. Accordingly, the resulting freezeout conditions, such as normalized entropy density [Formula: see text] and average energy per particle [Formula: see text][Formula: see text]GeV, are confirmed at finite chemical potentials as well. Furthermore, the problem of strangeness production in elementary collisions can be interpreted by thermal particle production from the Hawking–Unruh radiation. Consequently, the freezeout temperature depends on the quark masses. This leads to a deviation from full equilibrium and thus a suppression of the strangeness production in the elementary collisions. But in nucleus–nucleus collisions, an average temperature should be introduced in order to dilute the quark masses. This nearly removes the strangeness suppression. An extension to finite chemical potentials is introduced. The particle ratios of kaon-to-pion ([Formula: see text]), phi-to-kaon ([Formula: see text]) and antilambda-to-pion ([Formula: see text]) are determined from Hawking–Unruh radiation and compared with the thermal calculations and the measurements in different experiments. We conclude that these particle ratios can be reproduced, at least qualitatively, as Hawking–Unruh radiation at finite chemical potential. With increasing energy, both [Formula: see text] and [Formula: see text] keep their maximum values at low SPS energies. But the further energy decrease rapidly reduces both ratios. For [Formula: see text], there is an increase with increasing [Formula: see text], i.e., no saturation is to be observed.


1992 ◽  
Vol 07 (04) ◽  
pp. 659-681 ◽  
Author(s):  
D. V. DERYAGIN ◽  
D. YU. GRIGORIEV ◽  
V. A. RUBAKOV

Chiral symmetry breaking in QCD at zero temperature and high fermionic density is studied in the limit NC → ∞. We evaluate the effective action in the ladder approximation and integrate out fermions by introducing the bilocal field Σ(x, y), which enters the action as the mass operator for fermions. It is argued that at large fermionic chemical potential the mass operator Σ(x, y) has a small but nonvanishing expectation value. The condensate of the field Σ(x, y) and the fermionic condensate [Formula: see text] are inhomogeneous and anisotropic, so that the ground state has the structure of the standing wave with respect to these order parameters. Unlike possible color superconductivity, this symmetry breaking occurs to the leading order in 1/NC.


2021 ◽  
Vol 2021 (4) ◽  
Author(s):  
Kevin Goldstein ◽  
Vishnu Jejjala ◽  
Yang Lei ◽  
Sam van Leuven ◽  
Wei Li

Abstract We compute the superconformal index of the $$ \mathcal{N} $$ N = 4 SU(N) Yang-Mills theory through a residue calculation. The method is similar in spirit to the Bethe Ansatz formalism, except that all poles are explicitly known, and we do not require specialization of any of the chemical potentials. Our expression for the index allows us to revisit the Cardy limit using modular properties of four-dimensional supersymmetric partition functions. We find that all residues contribute at leading order in the Cardy limit. In a specific region of flavour chemical potential space, close to the two unrefined points, in fact all residues contribute universally. These universal residues precisely agree with the entropy functions of the asymptotically AdS5 black hole and its “twin saddle” respectively. Finally, we discuss how our formula is suited to study the implications of four-dimensional modularity for the index beyond the Cardy limit.


1998 ◽  
Vol 12 (21) ◽  
pp. 2129-2138 ◽  
Author(s):  
Augusto Gonzalez ◽  
Aurora Perez

We study trapped systems of bosons at zero temperature in three and two dimensions. Conditions are fulfilled for the application of Gross–Pitaevskii theory with a positive scattering length. Series expansions for ground-state properties are obtained in both the noninteracting and the strong-coupling (Thomas–Fermi) limits. From these expansions, analytic estimates are presented in the form of two-point Padé approximants. We explicitly show the approximants for the total energy per particle and the chemical potential.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Seyyed Mohammad Mehdi Moshiri ◽  
Najmeh Nozhat

AbstractIn this paper, an optical smart multibeam cross dipole nano-antenna has been proposed by combining the absorption characteristic of graphene and applying different arrangements of directors. By introducing a cross dipole nano-antenna with two V-shaped coupled elements, the maximum directivity of 8.79 dBi has been obtained for unidirectional radiation pattern. Also, by applying various arrangements of circular sectors as director, different types of radiation pattern such as bi- and quad-directional have been attained with directivities of 8.63 and 8.42 dBi, respectively, at the wavelength of 1550 nm. The maximum absorption power of graphene can be tuned by choosing an appropriate chemical potential. Therefore, the radiation beam of the proposed multibeam cross dipole nano-antenna has been controlled dynamically by applying a monolayer graphene. By choosing a suitable chemical potential of graphene for each arm of the suggested cross dipole nano-antenna without the director, the unidirectional radiation pattern shifts ± 13° at the wavelength of 1550 nm. Also, for the multibeam nano-antenna with different arrangements of directors, the bi- and quad-directional radiation patterns have been smartly modified to uni- and bi-directional ones with the directivities of 10.1 and 9.54 dBi, respectively. It is because of the graphene performance as an absorptive or transparent element for different chemical potentials. This feature helps us to create a multipath wireless link with the capability to control the accessibility of each receiver.


2020 ◽  
Vol 2020 (9) ◽  
Author(s):  
Mehrdad Mirbabayi

Abstract We propose a Euclidean preparation of an asymptotically AdS2 spacetime that contains an inflating dS2 bubble. The setup can be embedded in a four dimensional theory with a Minkowski vacuum and a false vacuum. AdS2 approximates the near horizon geometry of a two-sided near-extremal Reissner-Nordström black hole, and the two sides can connect to the same Minkowski asymptotics to form a topologically nontrivial worm- hole geometry. Likewise, in the false vacuum the near-horizon geometry of near-extremal black holes is approximately dS2 times 2-sphere. We interpret the Euclidean solution as describing the decay of an excitation inside the wormhole to a false vacuum bubble. The result is an inflating region inside a non-traversable asymptotically Minkowski wormhole.


2020 ◽  
Vol 102 (5) ◽  
Author(s):  
Maximilian Buser ◽  
Claudius Hubig ◽  
Ulrich Schollwöck ◽  
Leticia Tarruell ◽  
Fabian Heidrich-Meisner

2020 ◽  
Vol 2020 (11) ◽  
Author(s):  
Alejandro Cabo-Bizet ◽  
Davide Cassani ◽  
Dario Martelli ◽  
Sameer Murthy

Abstract We systematically analyze the large-N limit of the superconformal index of $$ \mathcal{N} $$ N = 1 superconformal theories having a quiver description. The index of these theories is known in terms of unitary matrix integrals, which we calculate using the recently-developed technique of elliptic extension. This technique allows us to easily evaluate the integral as a sum over saddle points of an effective action in the limit where the rank of the gauge group is infinite. For a generic quiver theory under consideration, we find a special family of saddles whose effective action takes a universal form controlled by the anomaly coefficients of the theory. This family includes the known supersymmetric black hole solution in the holographically dual AdS5 theories. We then analyze the index refined by turning on flavor chemical potentials. We show that, for a certain range of chemical potentials, the effective action again takes a universal cubic form that is controlled by the anomaly coefficients of the theory. Finally, we present a large class of solutions to the saddle-point equations which are labelled by group homomorphisms of finite abelian groups of order N into the torus.


Sign in / Sign up

Export Citation Format

Share Document