scholarly journals Low-energy solution to theμproblem in gauge mediation

1999 ◽  
Vol 60 (11) ◽  
Author(s):  
Paul Langacker ◽  
Nir Polonsky ◽  
Jing Wang
1997 ◽  
Vol 56 (2) ◽  
pp. 1281-1299 ◽  
Author(s):  
André de Gouve⁁a ◽  
Takeo Moroi ◽  
Hitoshi Murayama

1981 ◽  
Vol 100 (3) ◽  
pp. 1148-1153 ◽  
Author(s):  
Byron H. Arison ◽  
Ralph Hirschmann ◽  
William J. Paleveda ◽  
Stephen F. Brady ◽  
Daniel F. Veber

2009 ◽  
Vol 24 (09) ◽  
pp. 633-646 ◽  
Author(s):  
ANDREW E. BLECHMAN

This is an invited summary of a seminar talk given at various institutions in the United States and Canada. After a brief introduction, a review of the minimal R-symmetric supersymmetric standard model is given, and the benefits to the flavor sector are discussed. R-symmetric gauge mediation is an attempt to realize this model using metastable supersymmetry breaking techniques. Sample low energy spectra are presented and tuning is discussed. Various other phenomenological results are summarized.


Author(s):  
A. Garg ◽  
W.A.T. Clark ◽  
J.P. Hirth

In the last twenty years, a significant amount of work has been done in the theoretical understanding of grain boundaries. The various proposed grain boundary models suggest the existence of coincidence site lattice (CSL) boundaries at specific misorientations where a periodic structure representing a local minimum of energy exists between the two crystals. In general, the boundary energy depends not only upon the density of CSL sites but also upon the boundary plane, so that different facets of the same boundary have different energy. Here we describe TEM observations of the dissociation of a Σ=27 boundary in silicon in order to reduce its surface energy and attain a low energy configuration.The boundary was identified as near CSL Σ=27 {255} having a misorientation of (38.7±0.2)°/[011] by standard Kikuchi pattern, electron diffraction and trace analysis techniques. Although the boundary appeared planar, in the TEM it was found to be dissociated in some regions into a Σ=3 {111} and a Σ=9 {122} boundary, as shown in Fig. 1.


Author(s):  
G. G. Hembree ◽  
Luo Chuan Hong ◽  
P.A. Bennett ◽  
J.A. Venables

A new field emission scanning transmission electron microscope has been constructed for the NSF HREM facility at Arizona State University. The microscope is to be used for studies of surfaces, and incorporates several surface-related features, including provision for analysis of secondary and Auger electrons; these electrons are collected through the objective lens from either side of the sample, using the parallelizing action of the magnetic field. This collimates all the low energy electrons, which spiral in the high magnetic field. Given an initial field Bi∼1T, and a final (parallelizing) field Bf∼0.01T, all electrons emerge into a cone of semi-angle θf≤6°. The main practical problem in the way of using this well collimated beam of low energy (0-2keV) electrons is that it is travelling along the path of the (100keV) probing electron beam. To collect and analyze them, they must be deflected off the beam path with minimal effect on the probe position.


Sign in / Sign up

Export Citation Format

Share Document