Transfer optics for high spatial resolution electron spectroscopy

Author(s):  
G. G. Hembree ◽  
Luo Chuan Hong ◽  
P.A. Bennett ◽  
J.A. Venables

A new field emission scanning transmission electron microscope has been constructed for the NSF HREM facility at Arizona State University. The microscope is to be used for studies of surfaces, and incorporates several surface-related features, including provision for analysis of secondary and Auger electrons; these electrons are collected through the objective lens from either side of the sample, using the parallelizing action of the magnetic field. This collimates all the low energy electrons, which spiral in the high magnetic field. Given an initial field Bi∼1T, and a final (parallelizing) field Bf∼0.01T, all electrons emerge into a cone of semi-angle θf≤6°. The main practical problem in the way of using this well collimated beam of low energy (0-2keV) electrons is that it is travelling along the path of the (100keV) probing electron beam. To collect and analyze them, they must be deflected off the beam path with minimal effect on the probe position.

Author(s):  
Gary G. Hembree ◽  
Frank C. H. Luo ◽  
John A. Venables

A new UHV-STEM has been developed for the NSF-HREM facility at Arizona State University. In this instrument low energy (0-2 keV) electrons can be collected through the objective lens from both sides of thin (STEM) samples, or from the input side of bulk (SEM) samples. As explained in more detail elsewhere, we use magnetic parallelizers to control the angular compression of the emitted secondary and Auger electrons, which spiral around the B-field lines. The parallelizers have axial fields of about 100 G, and compress all these emitted electrons into a cone of less than 6 deg. The sample may be biassed negatively by a few hundred volts, which enables us to compress the cone angle further and to observe the sample using biassed secondary electron imaging (b-SEI). At the exit aperture of the parallelizer the low energy electrons are deflected slightly off-axis by a Wien (E × B) filter to separate them from the the 100 keV beam.


Author(s):  
Michael Beer ◽  
J. W. Wiggins ◽  
David Woodruff ◽  
Jon Zubin

A high resolution scanning transmission electron microscope of the type developed by A. V. Crewe is under construction in this laboratory. The basic design is completed and construction is under way with completion expected by the end of this year.The optical column of the microscope will consist of a field emission electron source, an accelerating lens, condenser lens, objective lens, diffraction lens, an energy dispersive spectrometer, and three electron detectors. For any accelerating voltage the condenser lens function to provide a parallel beam at the entrance of the objective lens. The diffraction lens is weak and its current will be controlled by the objective lens current to give an electron diffraction pattern size which is independent of small changes in the objective lens current made to achieve focus at the specimen. The objective lens demagnifies the image of the field emission source so that its Gaussian size is small compared to the aberration limit.


Author(s):  
M. G. R. Thomson

The variation of contrast and signal to noise ratio with change in detector solid angle in the high resolution scanning transmission electron microscope was discussed in an earlier paper. In that paper the conclusions were that the most favourable conditions for the imaging of isolated single heavy atoms were, using the notation in figure 1, either bright field phase contrast with β0⋍0.5 α0, or dark field with an annular detector subtending an angle between ao and effectively π/2.The microscope is represented simply by the model illustrated in figure 1, and the objective lens is characterised by its coefficient of spherical aberration Cs. All the results for the Scanning Transmission Electron Microscope (STEM) may with care be applied to the Conventional Electron Microscope (CEM). The object atom is represented as detailed in reference 2, except that ϕ(θ) is taken to be the constant ϕ(0) to simplify the integration. This is reasonable for θ ≤ 0.1 θ0, where 60 is the screening angle.


Author(s):  
Earl J. Kirkland ◽  
Robert J. Keyse

An ultra-high resolution pole piece with a coefficient of spherical aberration Cs=0.7mm. was previously designed for a Vacuum Generators HB-501A Scanning Transmission Electron Microscope (STEM). This lens was used to produce bright field (BF) and annular dark field (ADF) images of (111) silicon with a lattice spacing of 1.92 Å. In this microscope the specimen must be loaded into the lens through the top bore (or exit bore, electrons traveling from the bottom to the top). Thus the top bore must be rather large to accommodate the specimen holder. Unfortunately, a large bore is not ideal for producing low aberrations. The old lens was thus highly asymmetrical, with an upper bore of 8.0mm. Even with this large upper bore it has not been possible to produce a tilting stage, which hampers high resolution microscopy.


2021 ◽  
Author(s):  
Sae Aizawa ◽  
Nicolas André ◽  
Ronan Modolo ◽  
Elisabeth Werner ◽  
Jim Slavin ◽  
...  

<p><span lang="EN-GB">BepiColombo is going to conduct its first Mercury flyby in October 2021. During this flyby,  plasma measurement will be obtained and bring new insights on the Hermean magnetosphere and its interaction with the Sun despite the limited field of view of the instruments during the cruise phase. Unlike Mariner-10 ion measurements will be obtained, and unlike MESSENGER, low energy electrons and ions will be measured simultaneously. In this study, we have revisited Mariner 10 and MESSENGER observations with the help of the global hybrid model LatHyS in order to understand the influence of time-variable solar wind and to constraint the plasma environment. We are able to reproduce the magnetic field observations of Mariner 10 along its trajectory with in particular two distinct signatures consisting of a quiet and disturbed state of the magnetosphere. In addition, the plasma spectrogram is also collected in the model and this enables us to detail the properties of the charged particles observed during the flyby. We will discuss all these signatures both in term of an interaction with a time-variable solar wind and localized processes occurring in the magnetosphere. We will then present the virtual sampling of both the magnetic field and plasma spectrogram along BepiColombo’s first Mercury flyby trajectory and discuss the possible signatures to be observed at that time.</span></p>


Science ◽  
2020 ◽  
Vol 367 (6482) ◽  
pp. 1124-1127 ◽  
Author(s):  
F. S. Hage ◽  
G. Radtke ◽  
D. M. Kepaptsoglou ◽  
M. Lazzeri ◽  
Q. M. Ramasse

Single-atom impurities and other atomic-scale defects can notably alter the local vibrational responses of solids and, ultimately, their macroscopic properties. Using high-resolution electron energy-loss spectroscopy in the electron microscope, we show that a single substitutional silicon impurity in graphene induces a characteristic, localized modification of the vibrational response. Extensive ab initio calculations reveal that the measured spectroscopic signature arises from defect-induced pseudo-localized phonon modes—that is, resonant states resulting from the hybridization of the defect modes and the bulk continuum—with energies that can be directly matched to the experiments. This finding realizes the promise of vibrational spectroscopy in the electron microscope with single-atom sensitivity and has broad implications across the fields of physics, chemistry, and materials science.


2001 ◽  
Vol 7 (S2) ◽  
pp. 896-897
Author(s):  
O.L. Krivanek ◽  
N. Dellby ◽  
P.D. Nellist ◽  
P.E. Batson ◽  
A.R. Lupini

Surprising as it may seem, aberration correction for the scanning transmission electron microscope (STEM) is now a practical proposition. The first-ever commercial spherical aberration corrector for a STEM was delivered by Nion to IBM Research Center in June 2000, and other deliveries have taken place since or are imminent. At the same time, the development of corrector hardware and software is still proceeding at full speed, and our understanding of what are the most important factors for the successful operation of a corrector is deepening continuously.Fig. 1 shows two high-angle dark field (HADF) images of [110] Si obtained with the IBM VG HB501 STEM operating at 120 kV, about 2 weeks after we fitted a quadrupole-octupole corrector into it. Fig. 1(a) shows the best HADF image that could be obtained with the corrector's quadrupoles on but its octupoles off. Sample structures were captured down to about 2.5 Å detail, easily possible in a STEM with a high resolution objective lens with a spherical aberration coefficient (Cs) of 1.3 mm. Fig. 1(b) shows a HADF image obtained after the Cs-correcting octupoles were turned on and the corrector tuned up. The resolution has now improved to 1.36 Å. This is sufficient to resolve the correct separation of the closely-spaced Si columns.


Author(s):  
M. K. Lamvik ◽  
J. M. Pullman ◽  
A. V. Crewe

Negative staining and high resolution shadowing have been extensively used for structural studies in electron microscopy. However, these techniques cover the specimen with a layer of heavy salt or metal, and hence do not allow determination of true mass distribution or localization of specific sites using heavy atom markers. A prerequisite for such structural studies is an examination of unstained specimens. For thin specimens dark field microscopy must be used to obtain adequate contrast. The scanning transmission electron microscope is preferred for such studies since elastic, energyloss, and unscattered electrons can be recorded and analyzed quantitatively to form images with a minimum of beam-induced damage.


Author(s):  
J. W. Wiggins ◽  
M. Beer ◽  
D. C. Woodruff ◽  
J. A. Zubin

A high resolution scanning transmission electron microscope has been constructed and is operating. The initial task of this instrument is to attempt the sequencing of DNA by heavy-atom specific staining. It is also suitable for many other biological investigations requiring high resolution, low contamination and minimum radiation damage.The basic optical parameters are: 20 to 100 KV acceleration potential, objective lens focal length of 1.0 mm. with Cs = 0.7 mm., and two additional lenses designated as condensor and diffraction lenses. The purpose of the condensor lens is to provide a parallel beam incident to the objective, and the diffraction lens produces an image of the back focal plane of the objective in the plane of an annular detector.


Sign in / Sign up

Export Citation Format

Share Document