coincidence site lattice
Recently Published Documents


TOTAL DOCUMENTS

188
(FIVE YEARS 21)

H-INDEX

23
(FIVE YEARS 3)

Metals ◽  
2020 ◽  
Vol 10 (11) ◽  
pp. 1557
Author(s):  
Hye-Jin Kim ◽  
Hidetoshi Fujii ◽  
Seung-Joon Lee

The effect of friction stir welding on microstructure and corrosion property was studied in Fe-30Mn-3Al-3Si (wt.%) twinning-induced plasticity steel using both an electron backscattered diffractometer and electrochemical testing (i.e., polarization test and electrochemical impedance spectroscope). The stir zone has a relatively higher corrosion resistance with uniform dissolution on the surface despite after welding, whereas the base metal shows localized corrosion attack with deep and long degradation along the grain boundaries. This is due to the corrosion-resistant coincidence site lattice boundaries caused by discontinuous dynamic recrystallization via the grain boundary bulging during the friction stir welding.


2020 ◽  
Vol 52 (1) ◽  
pp. 394-412
Author(s):  
P.-C. Zhao ◽  
B. Chen ◽  
Z.-G. Zheng ◽  
B. Guan ◽  
X.-C. Zhang ◽  
...  

Abstract The post-dynamic recrystallization behavior of ultrafine-grained (UFG: 0.44 μm) cp-Ti under annealing, room temperature (RT) monotonic and cyclic loading was investigated across a range of temperatures and deformation rates wherever appropriate. By characterizing the grain and boundary structures, it was confirmed that recrystallization and grain growth occurred due to annealing (≥ 600 °C) and R = − 1 fatigue at RT. There was a noticeable 30 deg aggregation in misorientation distribution, along with the increased grain size. However, the hypothetical correlation between 30 deg aggregation and Σ13a or the other characteristic coincidence site lattice boundaries was found to be weak. The fatigue-induced grain growth is particularly intriguing for two reasons. First, the large monotonic deformation with low strain rate cannot trigger grain growth. Second, fatigue sharpened the basal intensity around the ND and caused a weaker texture component close to TD (load axis along the LD, perpendicular to the TD–ND plane). By contrast, high-temperature annealing only strengthened the UFG processing induced basal pole but without affecting its location. Novel insights into this fatigue-induced texture evolution in UFG cp-Ti has been provided. The lattice rotation during fatigue can be attributed to the combined effect of activation of prismatic $$ \langle a\rangle $$ ⟨ a ⟩ slip parallel to LD, and basal $$ \langle a\rangle $$ ⟨ a ⟩ slip perpendicular to it. The theoretically calculated stress to activate dislocation slip by assuming a non-equilibrium grain boundary state lent support to the above assertion. Moreover, the TEM observation evidently showed the characteristics of dislocation cross-slip and multiple slip in the grain interior. Graphical Abstract


2020 ◽  
Vol 28 (8) ◽  
pp. 085006
Author(s):  
Mohamed A Hendy ◽  
Mohamed H Hamza ◽  
Hesham A Hegazi ◽  
Tarek M Hatem

Materials ◽  
2020 ◽  
Vol 13 (19) ◽  
pp. 4315 ◽  
Author(s):  
Chengcheng Xu ◽  
Youkang Zhang ◽  
Wanlei Liu ◽  
Ying Jin ◽  
Lei Wen ◽  
...  

The effect of welding speed on microstructure, mechanical properties, and corrosion properties of laser-assisted welded joints of a twinning-induced plasticity (TWIP) steel was investigated by using X-ray diffraction (XRD), scanning electron microscopy (SEM), electron backscattered diffraction (EBSD) analysis, electrochemical test, and micro-area scanning Kelvin probe test (SKP). The results reveal that the welded joints, with a fully austenitic structure, are obtained by laser welding. In addition, the preferred orientation of grains in fusion zone (FZ) increased with the increase of welding speed. Additionally, the coincidence site lattice (CSL) grain boundaries of FZ decreased with increasing welding speed. However, potentiodynamic polarization and SKP results demonstrated that the welding speed of 1.5 m/min renders superior corrosion resistance. It can also be inferred that the corrosion properties of the welded joints are related to the grain size and frequency of CSL grain boundary in FZ.


Nanomaterials ◽  
2020 ◽  
Vol 10 (9) ◽  
pp. 1653
Author(s):  
Shifeng Wang ◽  
Yong Li ◽  
Annie Ng ◽  
Qing Hu ◽  
Qianyu Zhou ◽  
...  

Bi2Se3 possesses a two-dimensional layered rhombohedral crystal structure, where the quintuple layers (QLs) are covalently bonded within the layers but weakly held together by van der Waals forces between the adjacent QLs. It is also pointed out that Bi2Se3 is a topological insulator, making it a promising candidate for a wide range of electronic and optoelectronic applications. In this study, we investigate the growth of high-quality Bi2Se3 thin films on mica by the molecular beam epitaxy technique. The films exhibited a layered structure and highly c-axis-preferred growth orientation with an XRD rocking curve full-width at half-maximum (FWHM) of 0.088°, clearly demonstrating excellent crystallinity for the Bi2Se3 deposited on the mica substrate. The growth mechanism was studied by using an interface model associated with the coincidence site lattice unit (CSLU) developed for van der Waals epitaxies. This high (001) texture favors electron transport in the material. Hall measurements revealed a mobility of 726 cm2/(Vs) at room temperature and up to 1469 cm2/(Vs) at 12 K. The results illustrate excellent electron mobility arising from the superior crystallinity of the films with significant implications for applications in conducting electrodes in optoelectronic devices on flexible substrates.


2020 ◽  
Vol 53 (5) ◽  
pp. 1212-1216
Author(s):  
Yvo Barnscheidt ◽  
Jan Schmidt ◽  
H. Jörg Osten

The Ge/Si(001) system has been analysed by grazing-incidence X-ray diffraction on a standard laboratory X-ray diffraction tool. A periodic array of interfacial edge dislocations forms a coincidence site lattice (CSL) which yields equidistantly spaced satellite peaks close to Bragg peaks of the Ge layer and Si substrate. The diffraction behaviour of the CSL was analysed using 2θ/φ scans along [100], [110] and [310] directions as well as azimuthal φ scans which revealed a 90° angular symmetry of the CSL. Additionally, different layer thicknesses, from 10 to 580 nm, were analysed, focusing on the dependence of layer thickness on the glancing angles of the satellite peaks. This method provides the ability to analyse whether or not epitaxially grown layers exhibit a periodic array of dislocations, and gain information about the orientation of the interfacial edge dislocations.


CORROSION ◽  
10.5006/3417 ◽  
2020 ◽  
Vol 76 (6) ◽  
pp. 591-600
Author(s):  
Anita Toppo ◽  
Vani Shankar ◽  
R.P. George ◽  
John Philip

Here the effect of nitrogen on the intergranular stress corrosion cracking (SCC) resistance of sensitized Type 316LN stainless steel containing different amounts of nitrogen is reported. SCC studies were performed at 70% of yield strength. Double-loop electrochemical potentiokinetic reactivation technique was used to quantify degree of sensitization (DOS) that was correlated with SCC resistance. SCC time to failure increased from 220 h to 285 h with increasing nitrogen content from 0.07 wt% to 0.14 wt%, but decreased drastically to approximately 120 h at 0.22 wt% nitrogen (i.e., beyond N solubility limit), due to excessive precipitation of Cr23C6 and Cr2N and drastic reduction in the coincidence site lattice (CSL) boundary distribution from 48% to approximately 32%. Scanning electron microscope images showed mixed mode of failure.


Materials ◽  
2020 ◽  
Vol 13 (3) ◽  
pp. 613 ◽  
Author(s):  
Tomoyuki Fujii ◽  
Takaya Furumoto ◽  
Keiichiro Tohgo ◽  
Yoshinobu Shimamura

This study investigated the susceptibility to intergranular corrosion (IGC) in austenitic stainless steel with various degrees of sensitization (DOSs) from a microstructural viewpoint based on the coincidence site lattice (CSL) model. IGC testing was conducted using oxalic acid and type 304 stainless steel specimens with electrochemical potentiokinetic reactivation (EPR) ratios that varied from 3 to 30%. As a measure of IGC susceptibility, the width of the corroded groove was used. The relationship between IGC susceptibility, grain boundaries (GB) structure, and EPR ratio of the specimens was evaluated. As a result, the IGC susceptibility cannot be characterized using the Σ value, irrespective of the DOS of the specimen. The IGC susceptibility increases with increasing unit cell area of CSL boundaries, which is a measure of the stability of the CSL boundaries, and then levels off. The relationship between the IGC susceptibility and unit cell area is sigmoidal, irrespective of the DOS of the specimen. The sigmoid curve shifts rightward and the upper bound of IGC susceptibility decreases with decreasing DOS of the specimen.


Sign in / Sign up

Export Citation Format

Share Document