scholarly journals Constraints on non-Newtonian gravity from the Casimir force measurements between two crossed cylinders

2001 ◽  
Vol 63 (11) ◽  
Author(s):  
V. M. Mostepanenko ◽  
M. Novello
Author(s):  
Serge Reynaud ◽  
Astrid Lambrecht

The Casimir force is an effect of quantum vacuum field fluctuations, with applications in many domains of physics. The ideal expression obtained by Casimir, valid for perfect plane mirrors at zero temperature, has to be modified to take into account the effects of the optical properties of mirrors, thermal fluctuations, and geometry. After a general introduction to the Casimir force and a description of the current state of the art for Casimir force measurements and their comparison with theory, this chapter presents pedagogical treatments of the main features of the theory of Casimir forces for one-dimensional model systems and for mirrors in three-dimensional space.


2012 ◽  
Vol 14 ◽  
pp. 337-346 ◽  
Author(s):  
TODD GRAVESON ◽  
CHARLES RACKSON ◽  
WOO-JOONG KIM

We report development of a high-sensitivity torsion balance to measure the thermal Casimir force. Special emphasis is placed on experimental investigations of a possible surface electric force originating from surface patch potentials that have been recently noticed by several experimental groups. By gaining a proper understanding of the actual contribution of the surface electric force in real materials, we aim to undertake precision force measurements to resolve the Casimir force at finite temperature in real metals, as well as in other semiconducting materials, such as graphene.


2010 ◽  
Vol 25 (11) ◽  
pp. 2231-2239 ◽  
Author(s):  
S. DE MAN ◽  
K. HEECK ◽  
K. SMITH ◽  
R. J. WIJNGAARDEN ◽  
D. IANNUZZI

We present a short overview of the recent efforts of our group in the design of high precision Casimir force setups. We first describe our Atomic Force Microscope based technique that allows one to simultaneously and continuously calibrate the instrument, compensate for a residual electrostatic potential, measure the Casimir force, and, in the presence of a fluid in the gap between the interacting surfaces, measure the hydrodynamic force. Then we briefly discuss a new force sensor that adapts well to Casimir force measurements in critical environments.


2005 ◽  
Vol 20 (11) ◽  
pp. 2222-2231 ◽  
Author(s):  
F. CHEN ◽  
U. MOHIDEEN ◽  
P. W. MILONNI

Modern unification theories that seek to unify gravity with the other fundamental forces predict a host of new particles outside the standard model. Many also invoke extra dimensions. Both of these effects lead to deviations from Newtonian gravity. For sub micron distance between two bodies, the Casimir force far exceeds the gravitational force. Thus both understanding and using the Casimir force is very important for checking the relevance of these unification theories. In particular, measurements of the Casimir force has allowed one to set some of the strongest constraints for corresponding distance regions. This paper summarizes the techniques used to measure the Casimir force and some of the limits that follow from them.


2003 ◽  
Vol 68 (11) ◽  
Author(s):  
R. S. Decca ◽  
E. Fischbach ◽  
G. L. Klimchitskaya ◽  
D. E. Krause ◽  
D. López ◽  
...  

2011 ◽  
Vol 26 (22) ◽  
pp. 3900-3909 ◽  
Author(s):  
A. A. BANISHEV ◽  
CHIA-CHENG CHANG ◽  
U. MOHIDEEN

Some experimental procedures and corresponding results of the precision measurement of the Casimir force between low doped Indium Tin Oxide ( ITO ) film and gold sphere are described. Measurements were performed using an Atomic Force Microscope in high vacuum. It is shown that the magnitude of the Casimir force decreases after prolonged UV treatment of the ITO film. Some critical data analysis steps such as the correction for the mechanical drift of the sphere-plate system and photodiodes are discussed.


2012 ◽  
Vol 85 (3) ◽  
Author(s):  
J. Laurent ◽  
H. Sellier ◽  
A. Mosset ◽  
S. Huant ◽  
J. Chevrier

Sign in / Sign up

Export Citation Format

Share Document