scholarly journals Quasinormal modes for the SdS black hole: An analytical approximation scheme

2003 ◽  
Vol 68 (2) ◽  
Author(s):  
V. Suneeta
2010 ◽  
Vol 25 (02) ◽  
pp. 111-124 ◽  
Author(s):  
R. SINI ◽  
NIJO VARGHESE ◽  
V. C. KURIAKOSE

The effect of cosmic string on the quasinormal modes (QNMs) of massless Dirac field perturbations were studied in different black hole spacetimes. Quasi-normal mode frequencies of massless Dirac field in Schwarzschild, RN extremal, SdS and near extremal SdS black hole spacetimes with cosmic string are obtained using WKB approximation. Our study shows a clear deviation in QNMs due to presence of cosmic string from those in the absence of string. The influence of cosmic string coded in the form of an increase in the oscillation frequency and damping time of QNMs.


2020 ◽  
Vol 101 (10) ◽  
Author(s):  
Ramin G. Daghigh ◽  
Michael D. Green ◽  
Jodin C. Morey
Keyword(s):  

2019 ◽  
Vol 100 (10) ◽  
Author(s):  
Chun-Hung Chen ◽  
Hing-Tong Cho ◽  
Alan S. Cornell ◽  
Gerhard E. Harmsen

2013 ◽  
Vol 45 (11) ◽  
pp. 2239-2250 ◽  
Author(s):  
S. Estrada-Jiménez ◽  
J. R. Gómez-Díaz ◽  
A. López-Ortega

2021 ◽  
pp. 2150137
Author(s):  
Shahid Chaudhary ◽  
Abdul Jawad ◽  
Kimet Jusufi ◽  
Muhammad Yasir

This paper explores the influence of special type of higher order generalized uncertainty principle on the thermodynamics of five-dimensional black hole in Einstein–Gauss–Bonnet gravity coupled to nonlinear electrodynamics. We examine the corrected thermodynamical properties of the black hole with some interesting limiting cases [Formula: see text] and [Formula: see text] and compared our results with usual thermodynamical relations. We observe that the influence of GUP correction stabilizes the BH and BH solution remains physical throughout the region of horizon radius. In this framework, we also uncover the relationship of shadow radius and quasinormal modes of the mentioned black hole. We conclude that shadow radius of our considered black hole is a perfect circle and it decreases with increasing values of charge and Gauss–Bonnet parameter. We also verify the inverse relation between the quasinormal modes frequencies and shadow radius, i.e. quasinormal modes should increase with increasing values of Gauss–Bonnet parameter and electric charge.


2013 ◽  
Vol 22 (02) ◽  
pp. 1330001 ◽  
Author(s):  
YONGJOON KWON ◽  
SOONKEON NAM

From the quasinormal modes (QNM) of black holes, we obtain the quantizations of the entropy and horizon area of black holes via Bohr–Sommerfeld quantization, based on Bohr's correspondence principle. For this, we identify the appropriate action variable of the classical system corresponding to a black hole. By considering the BTZ black holes in topologically massive gravity as well as Einstein gravity, it is found that the spectra of not the horizon areas but the entropies of black holes are equally spaced. We also propose that other characteristic modes of black holes, which are non-QNM or holographic QNM, can be used in quantization of entropy spectra just like QNM. From these modes, it is found that only the entropy spectrum of the warped AdS3 black hole is equally spaced as well. Furthermore, by considering a scattering problem in a black hole, we propose that the total transmission modes and total reflection modes of black holes can be regarded as characteristic modes of black holes and result in the equally spaced entropy of the Kerr and Reissner–Nordström black holes. Finally, we conclude that there is a universal behavior that the entropy spectra of various black holes are equally spaced.


Sign in / Sign up

Export Citation Format

Share Document