scholarly journals Spontaneous symmetry breaking in general relativity: Brane world concept

2009 ◽  
Vol 79 (10) ◽  
Author(s):  
Boris E. Meierovich
2016 ◽  
Vol 2016 ◽  
pp. 1-7 ◽  
Author(s):  
Taeyoon Moon ◽  
Phillial Oh

We explore the possibility of the spontaneous symmetry breaking in 5D conformally invariant gravity, whose action consists of a scalar field nonminimally coupled to the curvature with its potential. Performing dimensional reduction via ADM decomposition, we find that the model allows an exact solution giving rise to the 4D Minkowski vacuum. Exploiting the conformal invariance with Gaussian warp factor, we show that it also admits a solution which implements the spontaneous breaking of conformal symmetry. We investigate its stability by performing the tensor perturbation and find the resulting system is described by the conformal quantum mechanics. Possible applications to the spontaneous symmetry breaking of time-translational symmetry along the dynamical fifth direction and the brane-world scenario are discussed.


2018 ◽  
Vol 47 ◽  
pp. 1860101 ◽  
Author(s):  
Y. F. Pirogov

In the report there are presented the general frameworks for the quartet-metric gravity based on the two main principles. First, there exist in space-time the distinct dynamical coordinates, given by a scalar quartet, playing the role of the Higgs fields for gravity. Second, the physical gravity fields arising due to the spontaneous symmetry breaking serve as the dark components of the Universe. It is argued that the mere admixture to metric of the scalar quartet may give rise to an extremely wide spectrum of the emergent gravity phenomena beyond General Relativity (GR). Further developing the proposed frameworks to find out the next-to-GR theory of gravity is a challenge.


2021 ◽  
pp. 100453
Author(s):  
Hetian Chen ◽  
Di Yi ◽  
Ben Xu ◽  
Jing Ma ◽  
Cewen Nan

Symmetry ◽  
2021 ◽  
Vol 13 (8) ◽  
pp. 1358
Author(s):  
Yiannis Contoyiannis ◽  
Michael P. Hanias ◽  
Pericles Papadopoulos ◽  
Stavros G. Stavrinides ◽  
Myron Kampitakis ◽  
...  

This paper presents our study of the presence of the unstable critical point in spontaneous symmetry breaking (SSB) in the framework of Ginzburg–Landau (G-L) free energy. Through a 3D Ising spin lattice simulation, we found a zone of hysteresis where the unstable critical point continued to exist, despite the system having entered the broken symmetry phase. Within the hysteresis zone, the presence of the kink–antikink SSB solitons expands and, therefore, these can be observed. In scalar field theories, such as Higgs fields, the mass of this soliton inside the hysteresis zone could behave as a tachyon mass, namely as an imaginary quantity. Due to the fact that groups Ζ(2) and SU(2) belong to the same universality class, one expects that, in future experiments of ultra-relativistic nuclear collisions, in addition to the expected bosons condensations, structures of tachyon fields could appear.


Sign in / Sign up

Export Citation Format

Share Document