scholarly journals Spontaneous Symmetry Breaking in 5D Conformally Invariant Gravity

2016 ◽  
Vol 2016 ◽  
pp. 1-7 ◽  
Author(s):  
Taeyoon Moon ◽  
Phillial Oh

We explore the possibility of the spontaneous symmetry breaking in 5D conformally invariant gravity, whose action consists of a scalar field nonminimally coupled to the curvature with its potential. Performing dimensional reduction via ADM decomposition, we find that the model allows an exact solution giving rise to the 4D Minkowski vacuum. Exploiting the conformal invariance with Gaussian warp factor, we show that it also admits a solution which implements the spontaneous breaking of conformal symmetry. We investigate its stability by performing the tensor perturbation and find the resulting system is described by the conformal quantum mechanics. Possible applications to the spontaneous symmetry breaking of time-translational symmetry along the dynamical fifth direction and the brane-world scenario are discussed.

2009 ◽  
Vol 87 (3) ◽  
pp. 251-254 ◽  
Author(s):  
Ariel Edery ◽  
Luca Fabbri ◽  
M. B. Paranjape

We consider a Georgi–Glashow model conformally coupled to gravity. The conformally invariant action includes a triplet of scalar fields and SO(3) non-Abelian gauge fields. However, the usual mass term μ2ϕ2 is forbidden by the symmetry, and this role is now played by the conformal coupling of the Ricci scalar to the scalar fields. Spontaneous symmetry breaking occurs via gravitation. The spherically symmetric solutions correspond to localized solitons (magnetic monopoles) in asymptotically anti-de Sitter (AdS) spacetime and the metric outside the core of the monopole is found to be Schwarzschild–AdS. Though conformal symmetry excludes the Einstein–Hilbert term in the original action, it emerges in the effective action after spontaneous symmetry breaking and dominates the low-energy–long-distance regime outside the core of the monopole.


1976 ◽  
Vol 54 (16) ◽  
pp. 1660-1663 ◽  
Author(s):  
Shalom Eliezer

We have presented a special case where a hierarchy of spontaneous breaking of the symmetries can be achieved in conventional gauge theories (i.e. the Higgs scalars are elementary bosons and the coupling constants of the quartic interactions are small). We break spontaneously the chiral group SU(N) × SU(N) with Higgs scalars transforming like the (N, [Formula: see text]) representation of SU(N) × SU(N). By minimizing the potential we obtain a set of algebraic equations of the type[Formula: see text]where ηj are the vacuum expectation values of the Higgs scalars and μi2 and Aij are parameters. In order to get a hierarchy of spontaneous symmetry breaking we obtain the condition det Aij = 0.


Author(s):  
Michael E. Peskin

This chapter introduces chiral symmetry, the extra symmetry that QCD acquires when the masses of quarks are set to zero. It introduces the concept of spontaneous symmetry breaking and explains the spontaneous breaking of chiral symmetry in QCD. It introduces the concept of a Goldstone boson, a particle that has zero mass as the result of spontaneous symmetry breaking, and explains how this concept explains properties of the pi and K mesons and allows us to determine the underlying values of the quark masses.


2010 ◽  
Vol 25 (22) ◽  
pp. 4195-4220 ◽  
Author(s):  
E. I. GUENDELMAN

A general coordinate invariant theory is constructed where confinement of gauge fields and gauge dynamics in general is governed by the spontaneous symmetry breaking (s.s.b.) of scale invariance. The model uses two measures of integration in the action, the standard [Formula: see text] where g is the determinant of the metric and another measure Φ independent of the metric. To implement scale invariance, a dilaton field is introduced. Using the first-order formalism, curvature (ΦR and [Formula: see text]) terms, gauge field term ([Formula: see text] and [Formula: see text]) and dilaton kinetic terms are introduced in a conformally invariant way. Exponential potentials for the dilaton break down (softly) the conformal invariance down to global scale invariance, which also suffers s.s.b. after integrating the equations of motion. The model has a well-defined flat space limit. As a result of the s.s.b. of scale invariance phases with different vacuum energy density appear. Inside the bags, that is in the regions of larger vacuum energy density, the gauge dynamics is normal, that is nonconfining, while for the region of smaller vacuum energy density, the gauge field dynamics is confining. Likewise, the dynamics of scalars, like would be Goldstone bosons, is suppressed inside the bags.


2015 ◽  
Vol 93 (11) ◽  
pp. 1352-1355
Author(s):  
M.R. Tanhayi ◽  
S. Ejlali

In this paper, we study the conformal symmetry breaking in conformally invariant Hilbert–Einstein action via expansion of action up to second order around the background space–time. It is shown that the theory can be described a non-tachyonic and ghost-free theory that propagates massless spin-2, massive gauge, and also massless scalar fields.


2002 ◽  
Vol 17 (19) ◽  
pp. 1239-1247 ◽  
Author(s):  
F. BUCCELLA ◽  
C. A. SAVOY

We study the supersymmetric spontaneous symmetry breaking of SO(10) into SU (3) ⊗ SU (2) ⊗ U (1) for the most physically interesting cases of SU(5) or flipped SU (5) ⊗ U (1) intermediate symmetries. The first case is more easily realized while the second one requires a fine-tuning condition on the parameters of the superpotential. This is because in the case of SU(5) symmetry there is at most one singlet of the residual symmetry in each SO(10) irreducible representation. We also point out on more general grounds in supersymmetric GUTs that some intermediate symmetries can be exactly realized and others can only be approximated by fine-tuning. In the first category, there could occur some tunneling between the vacua with exact and approximate intermediate symmetry. The flipped SU (5) ⊗ U (1) symmetry improves the unification of gauge couplings if (B-L) is broken by ‖(B-L)‖ =1 scalars yielding right-handed neutrino masses below 1014 GeV .


2009 ◽  
Vol 24 (07) ◽  
pp. 1443-1456 ◽  
Author(s):  
I. KOROVER ◽  
E. I. GUENDELMAN

In this paper the consequences of introducing spontaneous symmetry breaking of scale invariance through a scale that is obtained from the integration of the equations of motion of four index field strengths are studied. Confinement is obtained for all values of this constant of integration. For negative values two point charges have a potential energy that grows linearly with distance, but they can be arbitrarily far apart (although this is costly from the point of view of energy). For positive values of the integration constant, there is no possibility of separating charges too far apart; at a certain point a new charge of opposite sign has to be added to form a neutral system that cannot be bigger that a critical size. We discuss this using different methods, including some developed by Adler and Piran. In addition, we discuss a few alternative effective actions that are similar and that also give confinement.


2021 ◽  
Vol 2021 (7) ◽  
Author(s):  
Hyun-Sik Jeong ◽  
Keun-Young Kim ◽  
Ya-Wen Sun

Abstract We investigate the properties of pole-skipping of the sound channel in which the translational symmetry is broken explicitly or spontaneously. For this purpose, we analyze, in detail, not only the holographic axion model, but also the magnetically charged black holes with two methods: the near-horizon analysis and quasi-normal mode computations. We find that the pole-skipping points are related with the chaotic properties, Lyapunov exponent (λL) and butterfly velocity (vB), independently of the symmetry breaking patterns. We show that the diffusion constant (D) is bounded by $$ D\ge {v}_B^2/{\lambda}_L $$ D ≥ v B 2 / λ L , where D is the energy diffusion (crystal diffusion) bound for explicit (spontaneous) symmetry breaking. We confirm that the lower bound is obtained by the pole-skipping analysis in the low temperature limit.


2020 ◽  
Vol 2020 (12) ◽  
Author(s):  
Florian Loebbert ◽  
Julian Miczajka

Abstract Recently, infinite families of massive Feynman integrals were found to feature an unexpected Yangian symmetry. In the massless case, similar integrability properties are understood via the interpretation of individual Feynman integrals as correlators in the massless fishnet theory introduced by Gürdoğan and Kazakov. Here we seek for an analogous interpretation of the integrability of massive Feynman integrals. We contrast two approaches to define simple massive quantum field theories in four dimensions. First, we discuss spontaneous symmetry breaking in the massless bi-scalar fishnet theory. We then propose an alternative route to a massive fishnet theory by taking a double-scaling limit of $$ \mathcal{N} $$ N = 4 SYM theory on the Coulomb branch. Both approaches lead to a massive extension of the massless fishnet theory, differing in how masses enter into the propagators. In the latter theory, planar off-shell amplitudes are in one-to-one correspondence with precisely those massive Feynman integrals that were shown to be invariant under the Yangian. This suggests a re-investigation of Coulomb branch $$ \mathcal{N} $$ N = 4 SYM theory with regard to integrability. Finally, we demonstrate that in the case of spontaneous symmetry breaking, the original conformal symmetry leads to soft theorems for scattering amplitudes in the broken phase.


Sign in / Sign up

Export Citation Format

Share Document