Gravitational perturbation of the BTZ black hole induced by test particles and weak cosmic censorship in AdS spacetime

2011 ◽  
Vol 83 (10) ◽  
Author(s):  
Jorge V. Rocha ◽  
Vitor Cardoso
2020 ◽  
Vol 35 (39) ◽  
pp. 2050323
Author(s):  
Shubham Kala ◽  
Hemwati Nandan ◽  
Prateek Sharma

We present a detailed study of gravitational lensing around a rotating Bañados–Teitelboim–Zanelli (BTZ) black hole in (2 + 1)-dimensional gravity. The study of orbits for massless test particle around this BH spacetime is performed to describe the nature of cosmological constant in lower dimensions. We study the effect of cosmological constant on the photon orbit in view of other critical parameters. The bending angle of light is studied in view of different values of cosmological constant for direct and retrograde motion of test particles. It is being observed that the bending angle slightly decreases as the value of cosmological constant increases in the negative region.


2018 ◽  
Vol 2018 ◽  
pp. 1-15
Author(s):  
Parthapratim Pradhan

We have examined the thermodynamic volume products for spherically symmetric and axisymmetric spacetime in the framework of extended phase space. Such volume products are usually formulated in terms of the outer horizon (H+) and the inner horizon (H-) of black hole (BH) spacetime. Besides volume product, the other thermodynamic formulations like volume sum, volume minus, and volume division are considered for a wide variety of spherically symmetric spacetime and axisymmetric spacetime. Like area (or entropy) product of multihorizons, the mass-independent (universal) features of volume products sometimes also fail. In particular, for a spherically symmetric AdS spacetime, the simple thermodynamic volume product of H± is not mass-independent. In this case, more complicated combinations of outer and inner horizon volume products are indeed mass-independent. For a particular class of spherically symmetric cases, i.e., Reissner Nordström BH of Einstein gravity and Kehagias-Sfetsos BH of Hořava Lifshitz gravity, the thermodynamic volume products of H± are indeed universal. For axisymmetric class of BH spacetime in Einstein gravity, all the combinations are mass-dependent. There has been no chance to formulate any combinations of volume product relation to be mass-independent. Interestingly, only the rotating BTZ black hole in 3D provides that the volume product formula is mass-independent, i.e., universal, and hence it is quantized.


2006 ◽  
Vol 21 (22) ◽  
pp. 1737-1748 ◽  
Author(s):  
Y. S. MYUNG ◽  
H. W. LEE

We study the wave equation for a massive scalar in three-dimensional AdS-black hole spacetimes to understand the unitarity issues in a semiclassical way. Here we introduce four interesting spacetimes: the non-rotating BTZ black hole (NBTZ), pure AdS spacetime (PADS), massless BTZ black hole (MBTZ), and extremal BTZ black hole (EBTZ). Our method is based on the potential analysis and solving the wave equation to find the condition for the frequency ω exactly. In the NBTZ case, one finds the quasinormal (complex and discrete) modes which signals for a non-unitary evolution. Real and discrete modes are found for the PADS case, which means that it is unitary obviously. On the other hand, we find real and continuous modes for the two extremal black holes of MBTZ and EBTZ. It suggests that these could be candidates for the unitary system.


2008 ◽  
Vol 23 (16n17) ◽  
pp. 2505-2524 ◽  
Author(s):  
SONGBAI CHEN ◽  
BIN WANG ◽  
RUKENG SU

We have studied the quasinormal modes and the late-time tail behaviors of scalar, electromagnetic and gravitational perturbations in the Schwarzschild black hole pierced by a cosmic string. Although the metric is locally identical to that of the Schwarzschild black hole so that the presence of the string will not imprint in the motion of test particles, we found that quasinormal modes and the late-time tails can reflect physical signatures of the cosmic string. Compared with the scalar and electromagnetic fields, the gravitational perturbation decays slower, which would be more interesting to disclose the string effect in this background.


2021 ◽  
Vol 2021 (7) ◽  
Author(s):  
Hwajin Eom ◽  
Wontae Kim

Abstract In three-dimensional AdS space, we consider the gravitational collapse of dust shell and then investigate the quantum radiation from the collapsing shell by employing the functional Schrödinger formalism. In the formation of the BTZ black hole, the interior geometry of the shell can be chosen as either the massless black hole or the global AdS space. In the incipient black hole limit, we obtain the wave function exactly from the time-dependent Schrödinger equation for a massless scalar field. Then, we show that the occupation number of excited states can be written by analytic expressions, and the radiation temperature is in agreement with the Hawking temperature, irrespective of the specific choice of the interior geometries.


2014 ◽  
Vol 23 (05) ◽  
pp. 1450044 ◽  
Author(s):  
Yuan Zhang ◽  
Sijie Gao

It has been shown previously that an extremal Reissner–Nordström or an extremal Kerr black hole cannot be overcharged or overspun by a test particle, if radiative and self-force effects are neglected. In this paper, we consider extremal charged and rotating black holes with cosmological constants. By studying the motion of test particles, we find the following results: An extremal Reissner–Nordström anti-de Sitter (RN–AdS) black hole can be overcharged by a test particle but an extremal Reissner–Nordström de Sitter (RN–dS) black hole cannot be overcharged. We also show that both extremal Kerr–de Sitter (Kerr–dS) and Kerr–anti-de Sitter (Kerr–AdS) black holes can be overspun by a test particle, implying a possible breakdown of the cosmic censorship conjecture. For the Kerr–AdS case, the overspinning requires that the energy of the particle be negative, a reminiscent of the Penrose process. In contrast to the extremal RN and Kerr black holes, in which cases the cosmic censorship is upheld, our results suggest some subtle relations between the cosmological constants and the cosmic censorship. We also discuss the effect of radiation reaction for the Kerr–dS case and find that the magnitude of energy loss due to gravitational radiation may not be enough to prevent the violation of the cosmic censorship.


2020 ◽  
Vol 102 (4) ◽  
Author(s):  
Srijit Bhattacharjee ◽  
Shailesh Kumar ◽  
Subhodeep Sarkar

Sign in / Sign up

Export Citation Format

Share Document